Как рассчитать насос для отопления: примеры расчетов и правила подбора оборудования

Часто встречаемые поломки

Наиболее распространенная проблема, из-за которой оборудование, обеспечивающее принудительную перекачку теплоносителя, выходит из строя — это его длительный простой.

Чаще всего система отопления активно используется зимой, а в теплое время года отключается. Но так как вода в ней не отличается чистотой, то со временем в трубах выпадает осадок. Из-за накопления солей жесткости между крыльчаткой и насосом агрегат перестает работать и может выйти из строя.

Решается вышеуказанная проблема достаточно легко. Для этого нужно попытаться самостоятельно запустить оборудование, открутив гайку и вручную повернув вал насоса. Нередко такого действия бывает более чем достаточно.

Если прибор все-таки не запустился, то единственным выходом будет демонтаж ротора и последующая основательная чистка насоса от накопившегося осадка солей.

Как выбрать и купить циркуляционный насос

Перед циркуляционными насосами задачи стоят несколько специфические, отличные от водяных, скважинных, дренажных и т. п. Если последние предназначены для перемещения жидкости с конкретной точкой излива, то циркуляционные и рециркуляционные просто «гоняют» жидкость по кругу.

К подбору хотелось бы подойти несколько нетривиально и предложить несколько вариантов. Так сказать, от простого к сложному — начать с рекомендаций производителей и последним описать как рассчитать циркуляционный насос для отопления по формулам.

Подобрать циркуляционный насос

Этот простой способ подобрать циркуляционный насос для отопления порекомендовал один из менеджеров по продаже насосов WILO.

Принимается, что теплопотери помещения на 1 м. кв. составят 100 Вт. Формула для расчета расхода:

Общие теплопотери дома (кВт) х 0,044 = расход циркуляционного насоса (м. куб./час.)

Например, если площадь частного дома составляет 800 м. кв. требуемый расход будет равен:

(800 х 100) / 1000 = 80 кВт — теплопотери дома

80 х 0,044 = 3,52 м. куб./час — требуемый расход циркуляционного насоса при температуре в помещении 20 град. С.

Из ассортимента WILO для таких требований подойдут насосы TOP-RL 25/7,5, STAR-RS 25/7, STAR-RS 25/8.

Касательно напора. Если система спроектирована в соответствии с современными требованиями (пластиковые трубы, закрытая система отопления) и нет никаких нестандартных решений, как-то высокая этажность или большая протяженность отопительных трубопроводов, то напора вышеуказанных насосов должно хватить «с головой».

Опять же, такой подбор циркуляционного насоса приблизительный, хотя в большинстве случаев он удовлетворит требуемым параметрам.

Подобрать циркуляционный насос по формулам.

Если есть желание перед тем как купить циркуляционный насос разобраться с требуемыми параметрами и подобрать его по формулам, то пригодится следующая информация.

определяем требуемый напор насоса

H=(R x L x k) / 100, где

H — требуемый напор насоса, м

L — длина трубопровода между наиболее удаленными точками «туда» и «назад». Другими словами это длина наибольшего «кольца» от циркуляционного насоса в системе отопления. (м)

Пример расчета циркуляционного насоса по формулам

Есть трехэтажный дом размерами 12м х 15м. Высота этажа 3 м. Дом отапливается радиаторами ( ∆ T=20°C) с терморегулирующими головками. Произведем расчет:

требуемая тепловая мощность

N (от. пл) = 0,1(кВт/м.кв.) х 12(м) х 15(м) х 3 этажа = 54 кВт

вычисляем расход циркуляционного насоса

Q = (0.86 х 54) / 20 = 2,33 м.куб/час

вычисляем напор насоса

Производитель пластиковых труб компания TECE рекомендует применять трубы с диаметром при котором скорость течения жидкости будет 0,55-0,75 м/с, удельное сопротивление стенки трубы — 100-250 Па/м. В нашем случае, для отопительной системы можно использовать трубу диаметром 40мм (11/4″). При расходе 2,319 м.куб/час скорость потока теплоносителя будет 0,75 м/с, удельное сопротивление одного метра стенки трубы 181 Па/м (0,02 м. вод.ст).

WILO YONOS PICO 25/1-8

GRUNDFOS UPS 25-70

Почти все производители, включая таких «грандов» как WILO и GRUNDFOS, размещают на своих сайтах специальные программы для подбора циркуляционного насоса. У вышеупомянутых компаний это WILO SELECT и GRUNDFOS WebCam.

Программы очень удобны, пользоваться ими достаточно просто

Особое внимание нужно уделить правильному вводу значений, что у неподготовленных пользователей часто вызывает затруднения

Купить циркуляционный насос

При покупке циркуляционного насоса особое внимание следует уделить фирме-продавцу. В настоящее время на рынке Украины «гуляет» очень много контрафактной продукции. Чем объяснить, что розничная цена циркуляционного насоса на рынке может быть в 3-4 раза меньше, чем у представителя компании производителя?

Чем объяснить, что розничная цена циркуляционного насоса на рынке может быть в 3-4 раза меньше, чем у представителя компании производителя?

По данным аналитиков, циркуляционный насос в бытовом секторе является лидером по энергопотреблению. В последние годы компании предлагают очень интересные новинки — энергосберегающие циркуляционные насосы с автоматической регулировкой мощности. Из бытовой серии у WILO это YONOS PICO, у GRUNDFOS — ALFA2. Такие насосы потребляют электроэнергии на несколько порядков меньше и существенно экономят денежные расходы владельцев.

Расчет тепловых потерь

Первый этап расчета заключается в расчете тепловых потерь комнаты. Потолок, пол, количество окон, материал из которых изготовлены стены, наличие межкомнатной или входной двери — все это источники теплопотерь.

Рассмотрим на примере угловой комнаты объемом 24,3 куб. м.:

  • площадь комнаты — 18 кв. м. (6 м х 3 м)
  • 1 этаж
  • потолок высотой 2,75 м,
  • наружные стены — 2 шт. из бруса (толщина18 см), обшитые изнутри гипроком и оклеенные обоями,
  • окно — 2 шт., 1,6 м х 1,1 м каждое
  • пол — деревянный утепленный, снизу — подпол.

Расчеты площадей поверхностей:

  • наружных стен за минусом окон: S1 = (6+3) х 2,7 — 2×1,1×1,6 = 20,78 кв. м.
  • окон: S2 = 2×1,1×1,6=3,52 кв. м.
  • пола: S3 = 6×3=18 кв. м.
  • потолка: S4 = 6×3= 18 кв. м.

Теперь, имея все расчеты теплоотдающих площадей, оценим теплопотери каждой:

  • Q1 = S1 х 62 = 20,78×62 = 1289 Вт
  • Q2= S2 x 135 = 3×135 = 405 Вт
  • Q3=S3 x 35 = 18×35 = 630 Вт
  • Q4 = S4 x 27 = 18×27 = 486 Вт
  • Q5=Q+ Q2+Q3+Q4=2810 Bт

Для чего необходимо выполнять расчет

Циркуляционный насос, установленный в системе отопления, должен эффективно решать две основные задачи:

  1. создавать в трубопроводе такой напор жидкости, который будет в состоянии преодолеть гидравлическое сопротивление в элементах отопительной системы;
  2. обеспечивать постоянное движение требуемого количества теплоносителя через все элементы отопительной системы.

При выполнении такого расчета учитывают два основных параметра:

  • общую потребность здания в тепловой энергии;
  • суммарное гидравлическое сопротивление всех элементов создаваемой отопительной системы.

Таблица 1. Тепловая мощность для различных помещений

После определения данных параметров уже можно выполнить расчет центробежного насоса и, основываясь на полученных значениях, выбрать циркуляционный насос с соответствующими техническими характеристиками. Подобранный таким образом насос будет не только обеспечивать требуемое давление теплоносителя и его постоянную циркуляцию, но и работать без чрезмерных нагрузок, которые могут стать причиной быстрого выхода устройства из строя.

Расчет высота напора

На данный момент посчитаны главные данные для подбора циркуляционного насоса, далее необходимо вычислить напор теплоносителя, это нужно для успешной работы всего оборудования. Это можно сделать так: Hpu=R*L*ZF/1000. Парметры:

  • Hpu это мощность или высота напора насоса, которая измеряется в метрах;
  • R обозначается как потеря в трубах подачи, Па/М;
  • L это протяженность контура отопливаемого помоещения, измерения проводятся в метрах;
  • ZF служит для представляения коэффициента сопротивления (гидрав).

Диаметр труб может сильно отличиться, поэтому параметр R имеет весомый диапазон от пятидесяти до ста пятидесяти Па на метр, для подобранного в примере места, требуется учитывать самый высокий показатель R. Корректную протяженность системы определить не так-то и просто, она в полной мере отталкивается от размера отапливаемого помещения. Все показатели дома суммируются, а потом умножаются на 2. При площади дома в триста метров в квадрате, возьмем, к примеру длину дома в тридцать м, ширину в десять м, а высоту в два с половиной метра. В таком исходе: L=(30+10+2.5)*2, что равно 85 метрам. Легче всего коэфф. сопротивления ZF определить так: при наличии термо-статичного вентиля, он равняется — 2.2 м, при отсутствии — 1.3. Берем самую большую. 150*85*2.2/10000=85 метров.

Читайте так же:

Как работать в EXCEL

Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.

Ввод исходных данных

Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.

ЯчейкаВеличинаЗначение, обозначение, единица выражения
D445,000Расход воды G в т/час
D595,0Температура на входе tвх в °C
D670,0Температура на выходе tвых в °C
D7100,0Внутренний диаметр d, мм
D8100,000Длина, L в м
D91,000Эквивалентная шероховатость труб ∆ в мм
D101,89Сумма коэф. местных сопротивлений — Σ(ξ)
  • значение в D9 берётся из справочника;
  • значение в D10 характеризует сопротивления в местах сварных швов.

Формулы и алгоритмы

Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.

ЯчейкаАлгоритмФормулаРезультатЗначение результата
D12!ERROR! D5 does not contain a number or expressiontср=(tвх+tвых)/282,5Средняя температура воды tср в °C
D13!ERROR! D12 does not contain a number or expressionn=0,0178/(1+0,0337*tср+0,000221*tср2)0,003368Кинематический коэф. вязкости воды — n, cм2/с при tср
D14!ERROR! D12 does not contain a number or expressionρ=(-0,003*tср2-0,1511*tср+1003, 1)/10000,970Средняя плотность воды ρ,т/м3 при tср
D15!ERROR! D4 does not contain a number or expressionG’=G*1000/(ρ*60)773,024Расход воды G’, л/мин
D16!ERROR! D4 does not contain a number or expressionv=4*G:(ρ*π*(d:1000)2*3600)1,640Скорость воды v, м/с
D17!ERROR! D16 does not contain a number or expressionRe=v*d*10/n487001,4Число Рейнольдса Re
D18!ERROR! Cell D17 does not existλ=64/Re при Re≤2320
λ=0,0000147*Re при 2320≤Re≤4000
λ=0,11*(68/Re+∆/d)0,25 при Re≥4000
0,035Коэффициент гидравлического трения λ
D19!ERROR! Cell D18 does not existR=λ*v2*ρ*100/(2*9,81*d)0,004645Удельные потери давления на трение R, кг/(см2*м)
D20!ERROR! Cell D19 does not existdPтр=R*L0,464485Потери давления на трение dPтр, кг/см2
D21!ERROR! Cell D20 does not existdPтр=dPтр*9,81*1000045565,9и Па соответственно
D20
D22!ERROR! D10 does not contain a number or expressiondPмс=Σ(ξ)*v2*ρ/(2*9,81*10)0,025150Потери давления в местных сопротивлениях dPмс в кг/см2
D23!ERROR! Cell D22 does not existdPтр=dPмс*9,81*100002467,2и Па соответственно D22
D24!ERROR! Cell D20 does not existdP=dPтр+dPмс0,489634Расчетные потери давления dP, кг/см2
D25!ERROR! Cell D24 does not existdP=dP*9,81*1000048033,1и Па соответственно D24
D26!ERROR! Cell D25 does not existS=dP/G223,720Характеристика сопротивления S, Па/(т/ч)2
  • значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
  • ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».

Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.

Оформление результатов

Авторское цветовое решение несёт функциональную нагрузку:

  • Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
  • Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
  • Жёлтые ячейки — вспомогательные предварительные расчёты.
  • Светло-жёлтые ячейки — результаты расчётов.
  • Шрифты:
    • синий — исходные данные;
    • чёрный — промежуточные/неглавные результаты;
    • красный — главные и окончательные результаты гидравлического расчёта.

Результаты в таблице Эксель

Пример от Александра Воробьёва

Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.

Исходные данные:

  • длина трубы100 метров;
  • ø108 мм;
  • толщина стенки 4 мм.

Таблица результатов расчёта местных сопротивлений

Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.

Основные виды насосов для отопления

Все предлагаемое производителями оборудование делится на две большие группы: насосы «мокрого» или «сухого» типа. Каждый вид имеет свои преимущества и недостатки, что обязательно нужно учитывать при выборе.

Оборудование «мокрого» типа

Насосы отопления, называемые «мокрыми», отличаются от своих аналогов тем, что их рабочее колесо и ротор помещен в тепловой носитель. При этом электрический мотор находится в герметичном боксе, куда влага попасть не может.

Этот вариант — это идеальное решение для небольших загородных домов. Такие устройства отличаются своей бесшумностью и не нуждаются в тщательном и частом техническом обслуживании. К тому же они легко ремонтируются, настраиваются и могут применяться при стабильном или слабо изменяющемся уровне расхода воды.

Отличительной чертой современных моделей «мокрых» насосов является простота их эксплуатации. Благодаря наличию «умной» автоматики можно без каких-либо проблем увеличить производительность или переключить уровень обмоток

Что касается недостатков, то указанная выше категория отличается низкой производительностью. Обуславливается этот минус невозможностью обеспечения высокой герметичности гильзы, разделяющей тепловой носитель и статор.

«Сухая» разновидность приборов

Для этой категории устройств характерно отсутствие прямого контакта ротора с, перекачиваемой им нагретой, водой. Вся рабочая часть оборудования отделена от электрического двигателя резиновыми защитными кольцами.

Главная особенность такого отопительного оборудования — большая эффективность. Но из этого преимущества вытекает существенный недостаток в виде высокой шумности. Решается проблема путем установки агрегата в отдельной комнате с хорошей звукоизоляцией.

При выборе стоит учитывать тот факт, что насос «сухого» типа создает завихрения воздуха, поэтому мелкие частицы пыли могут подниматься, что негативно скажется на уплотнительных элементах и, соответственно, герметичности устройства.

Производители решили эту проблему так: при работе оборудования между резиновыми кольцами создается тонкий водяной слой. Он выполняет функцию смазки и предотвращает разрушение уплотнительных деталей.

Приборы, в свою очередь, делятся на три подгруппы:

  • вертикальные;
  • блочные;
  • консольные.

Особенность первой категории заключается в вертикальном расположении электродвигателя. Такое оборудование стоит покупать только в том случае, если планируется перекачка большого объема теплового носителя. Что касается блочных насосов, то они устанавливаются на ровной бетонной поверхности.

Предназначены блочные насосы для использования в промышленных целях, когда требуются большие расходные и напорные характеристики

Консольные устройства характеризуются расположением всасывающего патрубка с наружной стороны улитки, в то время как нагнетательный находится на корпусе с противоположной.

Кавитация

Кавитацией называют образование в толще движущейся жидкости пузырьков пара при снижении гидростатического давления и схлопывание этих пузырьков в толще где гидростатическое давление повышается.

В центробежных насосах кавитация образуется на входной кромке рабочего колеса, в месте с максимальной скоростью потока и минимальным гидростатическим давлением. Схлопывание пузырька пара происходит во время его полной конденсации, при этом в месте схлопывания возникает резкое увеличение давления до сотен атмосфер. Если в момент схлопывания пузырёк находился на поверхности рабочего колеса или лопатки, то удар приходится на эту поверхность, что вызывает эрозию метала. Поверхность метала подверженная кавитационной эрозии носит выщербленный характер.

Кавитация в насосе сопровождается резким шумом, треском, вибрацией и что особенно важно, падением напора, мощности, подачи и КПД. Материалов, имеющих абсолютную устойчивость против кавитационного разрушения не существует, поэтому работа насоса в кавитационном режиме не допускается. Минимальное давление на входе в центробежный насос называют кавитационным запасом NPSH и указывается производителями насосов в техническом описании

Минимальное давление на входе в центробежный насос называют кавитационным запасом NPSH и указывается производителями насосов в техническом описании.

Расчет количества радиаторов при водяном отоплении

Формула расчета

В создании уютной атмосферы в доме при водяной системе отопления необходимым элементом являются радиаторы. При расчете учитываются общий объем дома, конструкция здания, материал стен, вид батарей и другие факторы.

Расчет производим следующим образом:

  • определяем тип помещения и выбираем вид радиаторов;
  • умножаем площадь дома на указанный тепловой поток;
  • делим полученное число на показатель теплового потока одного элемента (секции) радиатора и округляем результат в большую сторону.

Характеристики радиаторов

Тип радиатора

Тип радиатораМощность секцииКоррозийное воздействие кислородаОграничения по PhКоррозийное воздействие блуждающих токовДавление рабочее/ испытательноеГарантийный срок службы (лет)
Чугунный1106.5 — 9.06−9 /12−1510
Алюминиевый175−1997— 8+10−20 / 15−303−10
Трубчатый Стальной85+6.5 — 9.0+6−12 / 9−18.271
Биметаллический199+6.5 — 9.0+35 / 573−10

Правильно проведя расчет и монтаж из высококачественных комплектующих, вы обеспечите ваш дом надежной, эффективной и долговечной индивидуальной системой отопления.

Виды систем отопления

Задачи инженерных расчётов такого рода осложняются высоким разнообразием систем отопления, как с точки зрения масштабности, так и в плане конфигурации. Различают несколько видов отопительных развязок, в каждой из которых действуют свои закономерности:

1. Двухтрубная тупиковая система — наиболее распространённый вариант устройства, неплохо подходящий для организации как центральных, так и индивидуальных контуров обогрева.


Двухтрубная тупиковая система отопления

2. Однотрубная система или «Ленинградка» считается лучшим способом устройства гражданских отопительных комплексов тепловой мощностью до 30–35 кВт.


Однотрубная система отопления с принудительной циркуляцией: 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — кран Маевского; 5 — расширительный бак; 6 — циркуляционный насос; 7 — слив

3. Двухтрубная система попутного типа — наиболее материалоёмкий вид развязки отопительных контуров, отличающийся при этом наивысшей из известных стабильностью работы и качеством распределения теплоносителя.


Двухтрубная попутная система отопления (петля Тихельмана)

4. Лучевая разводка во многом схожа с двухтрубной попуткой, но при этом все органы управления системой вынесены в одну точку — на коллекторный узел.


Лучевая схема отопления: 1 — котёл; 2 — расширительный бак; 3 — коллектор подачи; 4 — радиаторы отопления; 5 — коллектор обратки; 6 — циркуляционный насос

Прежде чем приступить к прикладной стороне расчётов, нужно сделать пару важных предупреждений. В первую очередь нужно усвоить, что ключ к качественному расчёту лежит в понимании принципов работы жидкостных систем на интуитивном уровне. Без этого рассмотрение каждой отдельно взятой развязки превращается в переплетение сложных математических выкладок. Второе — практическая невозможность изложить в рамках одного обзора больше, чем базовые понятия, за более подробными разъяснениями лучше обратиться к такой литературе по расчёту отопительных систем:

  • Пырков В. В. «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2-е издание, 2010 г.
  • Р. Яушовец «Гидравлика — сердце водяного отопления».
  • Пособие «Гидравлика котельных» от компании De Dietrich.
  • А. Савельев «Отопление дома. Расчёт и монтаж систем».

Как рассчитать мощность газового котла отопления по площади дома?

Для этого вам придется воспользоваться формулой:

Под Мк в данном случае понимают искомую тепловую мощность в киловаттах. Соответственно S – это площадь вашего жилища в квадратных метрах, а К – это удельная мощность котла – «доза» энергии, расходуемая на обогрев 10 м2.

Расчет мощности газового котла

Как вычислить площадь? В первую очередь по плану жилища. Этот параметр указан в документах на дом. Не желаете искать документы? Тогда вам придется умножать длину и ширину каждой комнаты (в том числе и кухни, отапливаемого гаража, ванной, туалета, коридоров и так далее) суммируя все полученные значения.

Где взять значение удельной мощности котла? Конечно же, в справочной литературе.

Не желаете «копаться» в справочниках – примите во внимание следующие значения этого коэффициента:

  • Если в вашем регионе зимняя температура не опускается ниже -15 градусов Цельсия, коэффициент удельной мощности будет равен  0,9-1 кВт/м2.
  • Если зимой вы наблюдаете морозы до -25 °C, то ваш коэффициент равен 1,2-1,5 кВт/м2.
  • Если в зимнее время температура проседает до отметки до -35 °C и ниже, то в расчетах тепловой мощности вам придется оперировать значением 1,5-2,0  кВт/м2.

В итоге мощность котла, обогревающего строение на 200 «квадратов», расположенное в  Московской или Ленинградской области, равняется 30 кВт (200 х 1,5 / 10).

Как рассчитать мощность отопительного котла по объему дома?

В этом случае нам придется опираться на тепловые потери строения, вычисляемые по формуле:

Под Q в этом случае мы понимаем вычисляемые потери тепла. В свою очередь V – это объем, а ∆T – это разница температур внутри и снаружи здания. Под k понимается коэффициент теплового рассеивания, зависящий от инерции строительных материалов, дверного полотна и оконных створок.

Рассчитываем объем коттеджа

Как определить объем? Разумеется, по плану строения. Или простым перемножением площади на высоту потолков. Под разницей температур понимается «промежуток» между общепринятым «комнатным» значением –  22-24 °C – и средними показаниями градусника в зимнее время.

Коэффициент теплового рассеивания зависит от теплостойкости строения.

Поэтому, в зависимости от используемых строительных материалов и технологий, этот коэффициент принимает следующие значения:

  • От 3,0 до 4,0 – для бескаркасных складов или каркасных хранилищ без утепления стен и кровли.
  • От 2,0 до 2,9 – для технических строений из бетона и кирпича, дополненных минимальной теплоизоляцией.
  • От 1,0 до 1,9 – для старых домов, построенных до эры энергосберегающих технологий.
  • От 0,5 до 0,9 – для современных домов, построенных в соответствии с современными энергосберегающими стандартами.

В итоге мощность котла отапливающего современное, энергосберегающее строение площадью 200 квадратов и 3-метровым потолком, расположенное в климатической зоне с 25-гадусными морозами, доходит до 29,5 кВт (200х3х(22+25)х0,9/860).

Как рассчитать мощность котла с водогрейным контуром?

Зачем нужен 25-процентный запас мощности? В первую очередь для восполнения энергетических затрат, обусловленных «оттоком» тепла на водогрейный теплообменник во время работы двух контуров. Проще говоря: для того, чтобы вы не замерзли после принятия душа.

Твердотопливный котел Огонек КОТВ — 18В с водогрейным контуром

В итоге двухконтурный котел, обслуживающий системы отопления и горячего водоснабжения в доме на 200 «квадратов», который располагается севернее Москвы южнее Петербурга,  должен генерировать как минимум 37,5 кВт тепловой мощности (30 х 125%).

Как лучше считать – по площади или по объему?

В этом случае мы можем дать только следующий совет:

  • Если у вас стандартная планировка с высотой потолка до 3 метров, то считайте по площади.
  • Если высота потолков превышает 3-метровую отметку, или если площадь строения более 200 квадратных метров – считайте по объему.

Сколько стоит «лишний» киловатт?

С учетом 90-процентного КПД ординарного котла для производства 1 кВт тепловой мощности необходимо израсходовать не менее 0,09 кубометра природного газа с теплотворной способностью на уровне 35000 кДж/м3. Или около 0,075 кубометра топлива с максимальной теплотворной способностью – 43000 кДж/м3.

В итоге в течение отопительного периода ошибка в расчетах на 1 кВт обойдется владельцу в 688-905 рублей. Поэтому будьте аккуратны в расчетах, покупайте котлы с регулируемой мощностью и не стремитесь к «раздуванию» теплогенерирующей способности вашего отопительного прибора.

https://youtube.com/watch?v=Ok3OteQxxHU

Также советуем посмотреть:

  • Газовые котлы на сжиженном газе
  • Двухконтурные котлы на твердом топливе длительного горения
  • Паровое отопление в частном доме
  • Дымоход для твердотопливного котла отопления

Несколько дополнительных советов

На долголетие во многом влияет то, из каких материалов сделаны основные детали
Предпочтение стоит отдать помпам из нержавейки, бронзы и латуни.
Обратите внимание, на какое давление в системе рассчитан прибор

Хотя, как правило, с этим не возникает трудностей (10 атм
– хороший показатель).
Устанавливать насос лучше там, где температура минимальная – перед входом в котёл.
На входе важно установить фильтр.
Помпу желательно располагать, чтобы она «высасывала» воду из расширителя. Значит, порядок по ходу движения воды будет таким: расширительный бак, насос, котёл.

Заключение

Итак, для того, чтобы циркуляционный насос работал долго и добросовестно, нужно посчитать два основных его параметра (напор и производительность).

Не стоит стремиться постичь сложную инженерную математику.

В домашних условиях достаточно будет приблизительного расчёта. Все получившиеся дробные числа округляются в большую сторону.

Количество скоростей

Для управления (переключения скоростей) используется специальный рычаг на корпусе агрегата. Существуют модели, которые оснащаются датчиком температуры, что позволяет полностью автоматизировать процесс. Для этого не нужно вручную переключать скорости, насос это будет делать в зависимости от температуры в помещении.

Такая методика является одной из нескольких, которые возможно применять для расчёта мощности насоса для определённой системы отопления. Специалисты в этой области применяют и другие способы расчётов, которые позволяют подбирать оборудование по мощности и создаваемому давлению.

Многие хозяева частных домов могут не пытаться рассчитать мощность циркуляционного насоса для отопления, поскольку при покупке оборудования, как правило, предлагается помощь специалистов напрямую от компании-производителя или фирмы, заключившей договор с магазином.

При выборе насосного оборудования следует принять во внимание, что необходимые данные для проведения расчётов нужно брать максимальные, которые в принципе может испытывать система отопления. В реальности нагрузка на насос будет меньшей, поэтому оборудование никогда не будет испытывать перегрузок, что позволит ему работать долгое время

Но есть и минусы — более высокие счёта за электроэнергию.

Но с другой стороны, если выбрать насос с меньшей мощностью от требуемой, то на работу системы это никак не повлияет, то есть она будет работать в штатном режиме, но агрегат быстрее выйдет из строя. Хотя счёт за электричество также будет меньше.

Существует ещё один параметр, по которому стоит выбирать циркуляционные насосы. Можно заметить, что в ассортименте магазинов зачастую встречаются устройства с одинаковой мощностью, но с разными габаритами.

Рассчитать насос для отопления можно правильно, учитывая следующие факторы:

  1. 1. Для установки оборудования на обычные трубопроводы, смесители и байпасы нужно выбирать агрегаты длиной 180 мм. Небольшие устройства длиной 130 мм устанавливают в труднодоступных местах или внутри теплогенераторов.
  2. 2. Диаметр патрубков нагнетателя следует выбирать в зависимости от сечения труб основного контура. При этом увеличивать этот показатель можно, а уменьшать категорически запрещено. Поэтому если диаметр труб основного контура 22 мм, то и патрубки насоса должны быть от 22 мм и выше.
  3. 3. Оборудование с диаметром патрубков 32 мм может быть использовано, к примеру, в системах отопления с естественной циркуляцией для её модернизации.

Расчет насоса для системы отопления

Подбор циркуляционного насоса для отопления

Тип насоса должен быть обязательно циркуляционным, для отопления и выдерживать большие температуры (в пределах до 110 °С).

Основные параметры подбора циркуляционного насоса:

2. Максимальный напор, м.

Для более точного расчета, необходимо увидеть график напорно-расходной характеристики

Характеристика насоса – это напорно-расходная характеристика насоса. Показывает, как изменяется расход при воздействии определенного сопротивления потерь напора в системе отопления (целого контурного кольца). Чем быстрее движется теплоноситель в трубе, тем больше расход. Чем больше расход, тем больше сопротивления (потерь напора).

Поэтому, в паспорте указывают максимально возможный расход при минимально возможном сопротивлении системы отопления (одного контурного кольца). Любая система отопления оказывает сопротивление движению теплоносителя. И чем она больше, тем меньше окажется расход в целом на систему отопления.

Точка пересечения показывает реальный расход и потерю напора (в метрах).

Характеристика системы – это напорно-расходная характеристика системы отопления в целом для одного контурного кольца. Чем больше расход, тем больше сопротивление движению. Поэтому, если установлено для системы отопления качать: 2 м 3 /час, то насос нужно подобрать таким образом, чтобы удовлетворить данный расход. Грубо говоря, насос должен справиться с необходимым расходом. Если сопротивление отопления высокое, то насос должен обладать большим напором.

Для того, чтобы определить максимальный расход насоса, необходимо знать расход вашей системы отопления.

Для того чтобы определить максимальный напор насоса необходимо знать, какое сопротивление будет испытывать система отопления при заданном расходе.

Расход системы отопления.

Расход строго зависит от необходимого переноса тепла по трубам. Чтобы найти расход необходимо знать следующее:

2. Разница температур (Т1 и Т2) подающего и обратного трубопровода в системе отопления.

3. Средняя температура теплоносителя в системе отопления. (Чем ниже температура, тем меньше теряется тепло в системе отопления)

Предположим, что отапливаемое помещение потребляет 9 кВт тепла. И система отопления рассчитана, так чтобы отдать 9 кВт тепла.

Это означает, что теплоноситель, проходя через всю систему отопления (три радиатора) теряет свою температуру (Смотри изображение). То есть температура в точке Т1 (на подаче) всегда больше Т2 (на обратке).

Чем больше расход теплоносителя через систему отопления, тем ниже разница температур между подающей и обратной трубой.

Чем выше разница температур при неизменном расходе, тем больше тепла теряется в системе отопления.

С – теплоемкость теплоносителя воды, С=1163 Вт/(м 3 •°С) или С=1,163 Вт/(литр•°С)

Q – расход, (м 3 /час) или (литр/час)

t1 – Температура подающего теплоносителя

t2Температура остывшего теплоносителя

Поскольку потери помещения маленькие, я предлагаю посчитать через литры. Для больших потерь используйте м 3

Необходимо определиться какая разница температур будет между подающим и остывшим теплоносителем. Вы можете выбрать абсолютно любую температуру, от 5 до 20 °С. От выбора температур будет зависеть расход, а расход создаст некоторые скорости теплоносителя. А, как известно движение теплоносителя создает сопротивление. Чем больше расход, тем больше сопротивление.

Для дальнейшего расчета я выбираю 10 °С. То есть на подаче 60 °С на обратке 50 °С.

t1 – Температура подающего теплоносителя: 60 °С

t2 – Температура остывшего теплоносителя: 50 °С.

W=9 кВт = 9000 Вт

Из вышеуказанной формулы получаю:

Ответ: Мы получили необходимый минимальный расход 774 л/ч

Сопротивление системы отопления.

Сопротивление системы отопления будем измерять в метрах, потому, что это очень удобно.

Предположим, что мы уже рассчитали это сопротивление и оно равно 1,4 метров при расходе в 774 л/ч

Очень, важно понять, что чем выше расход, тем больше сопротивление. Чем ниже расход, тем меньше сопротивление

Поэтому при данном расходе в 774 л/ч мы получаем сопротивление 1,4 метров.

И так мы получили данные, это:

Расход = 774 л/ч = 0,774 м 3 /ч

Сопротивление = 1,4 метров

Далее по этим данным подбирается насос.

Рассмотрим циркуляционный насос с расходом до 3 м 3 /час (25/6) 25 мм-диаметр резьбы, 6 м – напор.

Желательно когда подбираете насос, посмотреть реальный график напорно-расходной характеристики. Если его не имеется, то рекомендую просто провести прямую линию на графике с указанными параметрами

Тут расстояние между точками A и B – минимальны, и поэтому данный насос подходит.

Его параметры будут равны:

Максимальный расход 2 м 3 /час

Максимальный напор 2 метра

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий

Adblock
detector