Трансформатор для галогенных ламп: зачем нужен, принцип действия и правила подключения

Видео по теме


Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.

Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.

В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.

  • две лампы вкрученные в патроны
  • два провода питания выходящие из патронов


Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет. Просто берете любой конец провода от каждой лампы и скручивает их между собой.

На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).

Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.

Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.

При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.

Соответственно и светить они будут менее чем в половину от своей изначальной мощности.

Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки.

Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69.6Вт

Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.

Что это дает нам в практическом смысле при реализации данных схем?

Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.

Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и 200Вт и соедините последовательно.

Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.

Расчет мощности трансформатора для ламп и схема подключения

Продаются сегодня различные трансформаторы, поэтому существуют определенные правила подбора необходимой мощности. Не стоит брать трансформатор слишком мощный. Он будет работать практически вхолостую. Недостаток мощности приведет к перегреву и дальнейшему выходу устройства из строя.

Рассчитать мощность трансформатора можно самостоятельно. Задачка скорее математическая и по силам каждому начинающему электрику. Например, необходимо установить 8 точечных галогенок напряжением 12 В и мощностью 20 ватт. Общая мощность при этом составит 160 ватт. Берем с запасом на 10 % примерно и приобретаем мощностью 200 ватт.

Схема №1 выглядит примерно таким образом: на линии 220 стоит одноклавишный выключатель, при этом оранжевый и синий провод подсоединяются ко входу трансформатора (первичные клеммы).

На линии 12 вольт все лампы подключаются к трансформатору (на вторичные клеммы). Соединяющие медные провода обязательно должны иметь одинаковое сечение, иначе яркость у лампочек будет разная.

Еще одно условие: провод, соединяющий трансформатор с галогеновыми лампами, должен быть длиной не менее 1,5 метров, лучше, если 3. Если сделать его слишком коротким, он начнет греться, и яркость лампочек снизится.

Схема №2 – для подключения галогеновых светильников. Здесь можно поступить по-другому. Разбить, к примеру, шесть светильников на две части. Для каждой установить понижающий трансформатор. Правильность такого выбора обусловлена тем, что при поломке одного из блоков питания вторая часть светильников все-таки будет продолжать работать. Мощность одной группы составляет 105 ватт. С небольшим коэффициентом запаса получаем, что приобрести необходимо два трансформатора на 150 ватт.

Совет! Каждый понижающий трансформатор запитайте своими проводами и соедините их в распределительной коробке. Места соединения оставьте в свободном доступе.

Правила выбора понижающего оборудования

Подбирая трансформатор для источников света галогенного типа, нужно учесть множество факторов. Начать стоит с двух важнейших характеристик: выходного напряжения прибора и его номинальной мощности. Первая должна строго соответствовать  величине рабочего напряжения подключенных к устройству ламп. Вторая же определяет суммарную мощность источников света, с которыми будет работать трансформатор.

На корпусе трансформатора всегда присутствует маркировка, изучив которую можно получить полную информацию об устройстве

Для точного определения нужной номинальной мощности желательно произвести несложный расчет. Для этого нужно сложить мощности всех источников света, которые будут подключены к понижающему устройству. К полученной величине следует прибавить 20% «запаса», необходимого для корректной работы прибора.

Проиллюстрируем конкретным примером. Для освещения гостиной планируется установить три группы галогенных ламп: по семь штук в каждой. Это точечные приборы напряжением 12 В и мощностью в 30 Вт. Потребуется три трансформатора для каждой группы. Подберем подходящий. Начнем с расчета номинальной мощности.

Подсчитаем и получим, что общая мощность группы – 210 Вт. С учетом требуемого запаса получаем 241 Вт. Таким образом, для каждой группы потребуется трансформатор, выходное напряжение которого 12 В, номинальная мощность  прибора 240 Вт.

Под эти характеристики подходят как электромагнитные, так и импульсные устройства

Останавливая свой выбор на последнем, нужно обратить особое внимание на номинальную мощность. Она должна быть представлена в виде двух цифр

Первая обозначает минимальную рабочую мощность. Нужно знать, что общая мощность ламп должна быть больше этой величины, иначе прибор не будет работать.

И небольшое замечание от специалистов, касающееся выбора мощности. Они предупреждают, что мощность трансформатора, которая указывается в технической документации, является максимальной. То есть, в нормальном состоянии он будет выдавать где-то на 25-30% меньше. Поэтому так называемый «запас» мощности необходим. Потому что если заставить устройство работать на пределе возможностей, долго оно не прослужит.

Для продолжительной эксплуатации галогенных светильников очень важно грамотно выбрать мощность понижающего трансформатора. При этом она должна иметь некоторый «запас», чтобы устройство не работало на пределе своих возможностей. Еще один важный нюанс касается размеров выбранного трансформатора и места его размещения

Чем мощнее прибор, тем он массивнее. Особенно это актуально для электромагнитных агрегатов. Желательно сразу найти подходящее место его установки. Если светильников несколько пользователи чаще предпочитают разделить их на группы и установить для каждой отдельный трансформатор

Еще один важный нюанс касается размеров выбранного трансформатора и места его размещения. Чем мощнее прибор, тем он массивнее. Особенно это актуально для электромагнитных агрегатов. Желательно сразу найти подходящее место его установки. Если светильников несколько пользователи чаще предпочитают разделить их на группы и установить для каждой отдельный трансформатор.

Объясняется это очень просто. Во-первых, при выходе из строя понижающего устройства остальные осветительные группы будут нормально работать. Во-вторых, каждый из установленных в таких группах трансформатор будет иметь меньшую мощность, чем общий, который нужно было бы поставить для всех ламп. Следовательно, его стоимость будет заметно ниже.

Какие бывают трансформаторы

Трансформаторами называют устройства электромагнитного или электронного типа. Они несколько отличаются принципом работы и некоторыми другими характеристиками. Электромагнитные варианты изменяют параметры стандартного сетевого напряжения на характеристики, пригодные для работы галогенок, электронные устройства кроме указанной работы выполняют еще преобразование тока.

Тороидальный электромагнитный прибор

Простейший тороидальный трансформатор собран из двух обмоток и сердечника. Последний называют еще магнитопроводом. Его изготавливают из ферромагнитного материала, обычно это сталь. Обмотки размещаются на стержне. Первичная подключена к источнику энергии, вторичная, соответственно, к потребителю. Электрическая связь между вторичной и первичной обмотками отсутствует.

Несмотря на невысокую стоимость и надежность в эксплуатации тороидальный электромагнитный трансформатор сегодня редко используется при подключении галогенных ламп

Таким образом мощность между ними передается только электромагнитным путем. Для увеличения индуктивной связи между обмотками используется магнитопровод. При подаче переменного тока клемму, соединенную с первой обмоткой, он образует внутри сердечника магнитный поток переменного типа. Последний сцепляется с обеими обмотками и индуцирует в них электродвижущую силу или ЭДС.

Под ее воздействием во вторичной обмотке создается переменный ток с напряжением, отличным от того, что было в первичной. В зависимости от числа витков устанавливается тип трансформатора, который может быть повышающим либо понижающим, и коэффициент трансформации. Для галогенных ламп всегда используются только понижающие аппараты.

Достоинствами обмоточных устройств считаются:

  • Высокая надежность в работе.
  • Простота в подключении.
  • Невысокая стоимость.

Тем не менее, тороидальные трансформаторы можно встретить в современных схемах с галогенными лампами достаточно редко. Это объясняется тем, что в силу конструктивных особенностей такие устройства имеют довольно внушительные габариты и массу. Поэтому их сложно замаскировать при обустройстве мебельной или потолочной подсветки, например.

Пожалуй, главный недостаток тороидальных электромагнитных трансформаторов — массивность и значительные габариты. Их крайне сложно замаскировать, если необходима скрытая установка

Также к минусам устройств этого типа можно отнести нагрев в процессе функционирования и чувствительность к возможным перепадам напряжения в сети, что отрицательно сказывается на сроке эксплуатации галогенок. Помимо этого обмоточные трансформаторы могут гудеть при работе, это не всегда приемлемо. Поэтому устройства используются большей частью в нежилых помещениях либо в производственных зданиях.

Импульсное или электронное устройство

Трансформатор состоит из магнитопровода или середчника и двух обмоток. В зависимости от формы сердечника и способа размещения на нем обмоток различают четыре разновидности таких устройств: стержневой, тороидальный, броневой и бронестрежневой. Разным может быть и число витков вторичной и первичной намотки. Варьируя их соотношения, получают понижающие и повышающие устройства.

В конструкции импульсного трансформатора присутствуют не только обмотки с сердечником, но и электронная начинка. Благодаря этому в него можно встроить системы защиты от перегрева, плавного включения и другие

Принцип работы трансформатора импульсного типа несколько отличается. На первичную обмотку подаются короткие однополярные импульсы, благодаря этому сердечник постоянно находится в состоянии намагничивания. Импульсы на первичной обмотке характеризуются как кратковременные сигналы прямоугольной формы. Они генерируют индуктивность с такими же характерными перепадами.

Они в свою очередь создают импульсы на вторичной катушке. Эта особенность дает электронным трансформаторам целый ряд преимуществ:

  • Небольшой вес и компактность.
  • Высокий уровень КПД.
  • Возможность встроить дополнительную защиту.
  • Расширенный рабочий диапазон напряжения.
  • Отсутствие нагрева и шума при работе.
  • Возможность корректировки выходящего напряжения.

Из недостатков стоит отметить регламентируемую минимальную нагрузку и достаточно высокую цену. Последнее связано с определенными сложностями в процессе изготовления таких устройств.

Драйвер

Применение драйвера вместо трансформаторного блока обусловлено особенностями работы светодиода, как неотъемлемого элемента современного осветительного оборудования. Все дело в том, что любой светодиод является нелинейной нагрузкой, электрические параметры которого меняются в зависимости от условий работы.

Рис. 3. Вольт-амперная характеристика светодиода

Как видите, даже при незначительных колебаниях напряжения произойдет существенное изменение силы тока. Особенно явно такие перепады ощущают мощные светодиоды. Также в работе присутствует температурная зависимость, поэтому от нагревания элемента снижается падение напряжения, а ток при этом возрастает. Такой режим работы крайне негативно сказывается на работе светодиода, из-за чего он быстрее выходит со строя. Подключать его напрямую от сетевого выпрямителя нельзя, для чего и применяются драйверы.

Особенность светодиодного драйвера заключается в том, что он выдает одинаковый ток с выходного фильтра, несмотря на размер, подаваемого на вход напряжения. Конструктивно современные драйверы для подключения светодиодов могут выполняться как на транзисторах, так и на базе микросхемы. Второй вариант приобретает все большую популярность за счет лучших характеристик драйвера, более простого управления параметрами работы.

Ниже приведен пример схемы работы драйвера:

Рис. 4. Пример схемы драйвера

Здесь на вход выпрямителя сетевого напряжения VDS1 поступает переменная величина, далее выпрямленное напряжение в драйвере передается через сглаживающий конденсатор C1 и полуплечо R1 — R2 на микросхему BP9022. Последняя генерирует серию импульсов ШИМ и передает ее через трансформатор на выходной выпрямитель D2 и выходной фильтр R3 — C3, применяемый для стабилизации выходных параметров. Благодаря введению дополнительных резисторов в схему питания микросхемы, такой драйвер может регулировать значение мощности на выходе и управлять интенсивностью светового потока.

Устройство и принцип работы

Электронные и электромагнитные модели трансформаторов различаются как по своей конструкции, так и по принципу работы, поэтому следует их рассматривать раздельно:

Трансформатор электромагнитный.

Как уже было написано выше, основой данной конструкции является тороидальный сердечник, изготовленный из электротехнической стали, на который намотаны первичная и вторичная обмотка. Между обмотками отсутствует электрический контакт, связь между ними осуществляется посредством электромагнитного поля, действие которого обусловлено явлением электромагнитной индукции. Схема понижающего электромагнитного трансформатора приведена на рисунке ниже, где:

  • первичная обмотка подключается к сети напряжением 220 Вольт (U1 на схеме) и в ней протекает электрический ток «i1»;
  • при подаче напряжения на первичную обмотку в сердечнике образуется электродвижущая сила (ЭДС);
  • ЭДС создаёт на вторичной обмотке разность потенциалов (U2 на схеме) и как следствие − наличие электрического тока «i2» при подключённой нагрузке (Zн на схеме).

Электронная и принципиальная схема тороидального трансформатора

Заданное значение напряжения на вторичной обмотке создаётся путём намотки определённого количества витков провода на сердечник устройства.

Трансформатор электронный.

В конструкции подобных моделей предусмотрено наличие электронных компонентов, посредством которых осуществляется преобразование напряжения. На приведённой ниже схеме напряжение электрической сети подаётся на вход устройства (INPUT), после чего посредством диодного моста оно преобразуется в постоянное, на котором работают электронные компоненты прибора.

Управляющий трансформатор намотан на ферритовом кольце (обмотки I, II и III), и именно его обмотки управляют работой транзисторов, а также обеспечивают связь с выводным трансформатором, выдающим преобразованное напряжение на выход устройства (OUTPUT). Кроме этого, в схеме присутствуют конденсаторы, обеспечивающие требующуюся форму выходного сигнала напряжения.

Принципиальная схема электронного трансформатора 220 на 12 Вольт

Приведённая схема электронного трансформатора может быть использована для подключения галогеновых ламп и прочих источников света, работающих на напряжении 12 Вольт.

Полезные советы

При подключении галогенных светильников, надо придерживаться полезных советов:

  • Часто светильники производятся с нестандартной маркировкой проводов. Это учитывается при подключении фазы и нуля. Неправильное подключение приведет к проблемам.
  • При установке светильников через диммер должны использоваться и специальные светодиодные лампы.
  • Проводка должна быть заземлена.
  • Провод выхода не должен быть длиннее, чем 2 метра, иначе будет происходить потеря тока и лампы светят намного тусклее.
  • Трансформатор не должен перегреваться, для этого устанавливаются не ближе 20 сантиметров от самого прибора освещения.
  • При расположении трансформатора в маленькой полости, нагрузка должна быть сокращена до 75 процентов.
  • Монтаж точечных светильников делается после полной отделки поверхностей.
  • Установку точечных галогенных светильников можно провести самостоятельно, соблюдая правила установки.
  • Если светильник квадратный, то сначала вырезается круг коронкой, а потом подрезаются углы (при пластиковых, гипсокартонных подвесных потолках).
  • При установке в ванной комнате необходимо воспользоваться трансформатором 12 В. Такое напряжение не нанесет вреда человеку.

Советуем посмотреть видео-инструкцию:

Схема подключения понижающего трансформатора

Как подключить трансформатор 220 на 12 вольт, интересует многих. Делается все просто. Подсказывает алгоритм действий маркировка в местах подключения. Выведенные клеммы на панель соединения с контактными проводами потребительского прибора обозначены латинскими буквами. Клеммы, к которым подключают нулевой провод, помечены символами N или 0. Силовая фаза — обозначение L или 220. Выходные клеммы обозначены цифрами 12 или 110. Остается не перепутать клеммы и практическими действиями ответить на вопрос, как подключить понижающий трансформатор 220.

Заводская маркировка клемм обеспечивает безопасное подключение человеком, не знакомым с подобными действиями. Импортные трансформаторы проходят отечественный сертификационный контроль и не представляют опасности при эксплуатации. Подключают изделие на 12 вольт по описанному выше принципу.

Теперь понятно, как подключают понижающий трансформатор заводского изготовления. Сложнее определиться с самодельным устройством. Сложности возникают, когда при монтаже прибора забывают промаркировать клеммы

Чтобы совершить подключение без ошибки, важно научиться визуально определять толщину проводов. Первичная катушка изготовлена из проволоки меньшего сечения, чем обмотка концевого действия

Схема подключения простая.

Надо усвоить правило, согласно которому можно получать повышающее электрическое напряжение, прибор подключают в обратном порядке (зеркальный вариант).

Принцип работы понижающего трансформатора понять легко. Эмпирически и теоретически установлено, что связь на уровне электронов в обоих катушках следует оценивать как разность магнитного потокового воздействия, создающего контакт с обоими катушками, к электронному потоку, который возникает в обмотке с меньшим числом витков. Подключая концевую катушку, обнаруживают, что в цепи появляется ток. То есть получают электроэнергию.

И здесь возникает электротехническая коллизия. Подсчитано, что подаваемая энергия от генератора на первичную катушку равна энергии, направленной в созданную цепь. И это происходит, когда между обмотками нет металлического, гальванического контакта. Передается энергия путем создания мощного магнитного потока, имеющего переменные характеристики.

В электротехнике есть термин «рассеивание». Магнитный поток на пути следования теряет мощность. И это плохо. Исправляет положение конструктивная особенность устройства трансформаторов. Созданные конструкции металлических магнитных путей не допускают рассеивания магнитного потока по цепи. В результате магнитные потоки первой катушки равны значениям второй или почти равны.

Как функционируют

Конструктивно все осветительные элементов с нитью накала одинаковы и состоят из цоколя, тела накала с нитью и колбы из стекла. Но галогенные лампы отличаются содержанием йода или брома.

Их функционирование происходит следующим образом. Атомы вольфрама, из которых состоит нить, высвобождаются и вступают в реакцию с галогенами – йодом или бромом (это не позволяет им осаждаться внутри на стенках колбы), создавая поток света. Наполнение газом значительно продлевает срок эксплуатации источника.

Далее происходит обратное развитие процесса – высокая температура заставляет распадаться новые соединения на составные части. Вольфрам высвобождается на поверхности тела накала или возле него.

Этот принцип действия делает световой поток более интенсивным и удлиняет срок службы галогеновой лампы (12 вольт или выше – неважно, утверждение справедливо для всех видов)

Назначение балласта

Обязательные электрические характеристики светильника дневного света:

  1. Потребляемый ток.
  2. Пусковое напряжение.
  3. Частота тока.
  4. Коэффициент амплитуды тока.
  5. Уровень освещённости.

Дроссель обеспечивает высокое начальное напряжение для инициирования тлеющего разряда, а затем быстро ограничивает ток для безопасного поддержания нужного уровня напряжения.

Основные функции балластного трансформатора рассматриваются далее.

Безопасность

Балласт регулирует мощность переменного тока для электродов. При прохождении переменного тока через дроссель напряжение повышается. Одновременно ограничивается сила тока, чем предотвращается короткое замыкание, которое приводит разрушению люминесцентного светильника.

Подогрев катодов

Для работы светильника необходим всплеск высокого напряжения: именно тогда происходит пробой межэлектродного промежутка, и загорается дуга. Чем холоднее лампа, тем выше необходимое напряжение. Напряжение «проталкивает» ток через аргон. Но у газа есть сопротивление, которое тем выше, чем холоднее газ. Поэтому требуется создать более высокое напряжение при максимально низких температурах.

Для этого требуется реализовать одну из двух схем:

  • с помощью пускового выключателя (стартёра), содержащего небольшую неоновую или аргоновую лампу мощностью 1 Вт. Она нагревает биметаллическую полосу в стартёре и облегчает инициирование газового разряда;
  • вольфрамовыми электродами, через которые проходит ток. При этом электроды нагреваются и ионизируют газ в трубке.

Обеспечение высокого уровня напряжения

При разрыве цепи магнитное поле прерывается, импульс высокого напряжения посылается через светильник, и возбуждается разряд. Используются следующие схемы создания высокого напряжения:

  1. Предварительный подогрев. В этом случае электроды нагреваются до инициирования разряда. Пусковой выключатель замыкается, позволяя току протекать через каждый электрод. Переключатель стартера быстро охлаждается, размыкая переключатель и запуская напряжение питания на дуговой трубке, в результате чего и возникает разряд. Во время работы вспомогательное питание на электроды не подаётся.
  2. Быстрый запуск. Электроды нагреваются постоянно, поэтому балластный трансформатор включает две специальные вторичные обмотки, которые обеспечивают низкое напряжение на электродах.
  3. Мгновенный запуск. Электроды перед началом работы не нагреваются.  Для устройств мгновенного пуска трансформатор обеспечивает относительно высокое пусковое напряжение. Вследствие этого разряд легко возбуждается между «холодными» электродами.

Ограничение электрического тока

Необходимость в этом возникает тогда, когда нагрузка (например, дуговой разряд) сопровождается падением напряжения на клеммах при увеличении тока.

Стабилизация процесса

К люминесцентным светильникам предъявляются два требования:

  • чтобы запустить источник света, для создания дуги в парах ртути необходим скачок высокого напряжения;
  • как только лампа запускается, газ оказывает уменьшающееся сопротивление.

Эти требования варьируются в зависимости от мощности источника.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий

Adblock
detector