Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Регулятор напряжения своими руками - схемы сборки и расчет основных параметров

Схема подключения на базе LM2940CT-12.0

Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева. При использовании более десяти светодиодов, рекомендуется к стабильнику приделать алюминиевый радиатор.

Может кто-то пробовал и скажет, что можно запросто обойтись без лишних заморочек, напрямую подключив светодиоды. Но в этом случае последние большую часть времени будут находиться в неблагоприятных условиях, посему прослужат недолго или вовсе сгорят. А ведь тюнинг дорогих авто выливается в довольно крупную сумму.

А по поводу описанных схем, их главное достоинство – простота. Для изготовления не требуется особых навыков и умений. Впрочем, если схема слишком сложная, то собирать её своими руками становится не рационально.

Что нужно для подключения

Помимо самого стабилизатора, вам понадобится ряд дополнительных материалов:

трехжильный кабель ВВГнГ-Ls

Сечение провода должно быть точно таким же, как и на вашем вводном кабеле, который приходит на рубильник или автомат главного ввода. Так как через него будет идти вся нагрузка дома.

выключатель трехпозиционный

Данный выключатель в отличие от простых, имеет три состояния:

123

Можно использовать и обычный модульный автомат, но при такой схеме, если понадобится отключиться от стабилизатора, придется каждый раз полностью обесточивать весь дом и перекидывать провода.

Есть конечно же режим байпас или транзит, но чтобы перейти на него, нужно соблюдать строгую последовательность. Подробнее об этом будет сказано ниже.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

С данным переключателем, вы одним движением целиком отсекаете агрегат, а дом остается со светом напрямую.

провод ПУГВ разных цветов

Вы должны четко понимать, что стабилизатор напряжения устанавливается строго до электросчетчика, а не после него.

Ни одна энергоснабжающая организация вам не разрешит подключиться по другому, как бы вы не доказывали, что тем самым, кроме эл.оборудования в доме, вы хотите защитить и сам прибор учета.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Стабилизатор имеет свой холостой ход и также потребляет эл.энергию, даже работая без нагрузки (до 30Вт/ч и выше). И эта энергия должна быть учтена и подсчитана.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Второй важный момент – крайне желательно, чтобы в схеме до места подключения прибора стабилизации было либо УЗО, либо дифф.автомат.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Это рекомендуют все производители популярных марок Ресанта, Sven, Лидер, Штиль и т.п

Это может быть вводной дифф.автомат на весь дом, не важно. Главное, чтобы само оборудование было защищено от утечек тока

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

А пробой обмоток трансформатора на корпус, не такая уж и редкая вещь.

Регулировка инерционного стабилизатора изображения для фотокамеры

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Если вы используете грузики, положение центра тяжести которых нельзя изменить (как на фото), то отрегулировать горизонт можно путём поворота вертикальной планки на небольшой угол в узле её крепления. Перед регулировкой, один из винтов отпускается, а второй затягивается не до конца. После чего, планка устанавливается в нужно положение, и оба винта затягиваются.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Если в камере нет электронного индикатора уровня, то для юстировки горизонтального положения камеры можно использовать внешний пузырьковый уровень.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Если отказаться от установки быстросъёмной площадки, и использовать стандартный фото винт, то такой стабилизатор можно изготовить за пару часов.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

А вот идея, как можно приподнять фото винт от фотовспышки над горизонтальной планкой. Давным-давно использовал это решение здесь>>>

Регулируемый блок питания своими руками

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборкиСхема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборкиСхема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборкиПечатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборкиСхема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Принцип работы и тест самоделки

Регулирующим элементом электронной схемы стабилизации выступает мощный полевой транзистор типа IRF840.

Напряжение для обработки (220-250В) проходит первичную обмотку силового трансформатора, выпрямляется диодным мостом VD1 и поступает на сток транзистора IRF840. Исток этого же компонента соединен с минусовым потенциалом диодного моста.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Схема принципиальная стабилизирующего блока высокой мощности (до 2 кВт), на основе которой были собраны и успешно используются несколько аппаратов. Схема показала оптимальный уровень стабилизации при указанной нагрузке, но не выше

Часть схемы, куда включена одна из двух вторичных обмоток трансформатора, образуется диодным выпрямителем (VD2), потенциометром (R5) и другими элементами электронного регулятора. Этой частью схемы формируется управляющий сигнал, который поступает на затвор полевого транзистора IRF840.

На случай повышения напряжения питающей сети, управляющим сигналом понижается напряжение затвора полевого транзистора, что приводит к закрытию ключа.

Соответственно на контактах подключения нагрузки (XT3, XT4) возможное повышение напряжения ограничивается. Обратным вариантом работает схема на случай понижения сетевого напряжения.

Настройка прибора особой сложностью не отличается. Здесь потребуется обычная лампа накаливания (200-250 Вт), которую следует включить на клеммы выхода прибора (X3, X4). Далее вращением потенциометра (R5) напряжение на отмеченных клеммах доводят до уровня 220-225 вольт.

Выключают стабилизатор, отключают лампу накаливания и включают прибор уже с полноценной нагрузкой (не выше 2 кВт).

После 15-20 минут работы вновь отключают аппарат и производят контроль температуры радиатора ключевого транзистора (IRF840). Если нагрев радиатора существенный (более 75º), следует подобрать более мощный теплоотводящий радиатор.

Индикатор для блока питания

Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.

Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:

Плёнка — самоклейка типа «бамбук». Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.

Электромеханические (сервоприводные) устройства

Регулировка напряжения электросети производится посредством ползунка, который передвигается по обмотке. Одновременно с этим задействуется разное количество витков. Все мы учились в школе, а некоторые может быть имели дело с реостатом на уроках физики.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

По такому аналогичному принципу работает электромеханический стабилизатор напряжения. Только перемещение ползунка осуществляется не вручную, а при помощи электродвигателя, называемого сервоприводом. Знать устройство этих приборов просто необходимо, если есть желание изготовить стабилизатор напряжения 220В своими руками по схеме.

Электромеханические устройства отличаются высокой надежностью, и обеспечивают плавную регулировку напряжения. Характерные преимущества:

  • Стабилизаторы работают под любой нагрузкой.
  • Ресурс существенно больше, чем у прочих аналогов.
  • Доступная стоимость (вполовину ниже, чем у электронных приборов)

К сожалению, при всех достоинствах присутствуют и недостатки:

  • В силу механического устройства задержка срабатывания очень заметна.
  • В таких приборах применяются угольные контакты, которые подвержены естественному износу с течением времени.
  • Присутствие шума при работе, хоть и его практически не слышно.
  • Малый рабочий диапазон 140-260 В.

Стоит заметить, что в отличие от инверторного стабилизатора напряжения 220В (своими руками по схеме его можно изготовить вопреки кажущимся сложностям), здесь еще имеется трансформатор. А что касается принципа работы, то анализ напряжения производится электронным блоком управления. Если он заметит значительные отклонения от номинального значения, он посылает команду на перемещение ползунка.

Ток регулируется путем подключения большего количества витков трансформатора. На тот случай, если прибор не успевает своевременно среагировать на чрезмерное превышение напряжения, в устройстве стабилизатора предусмотрено реле.

Как пользоваться инерционным стабилизатором

Как оказалось, пользоваться инерционным стабилизатором намного проще, чем традиционным стедикамом. Жёсткий инерционный стабилизатор всегда мгновенно готов к работе, вследствие отсутствия затухающих колебаний, свойственных стедикамам маятникового типа.

При наборе скорости, оператору достаточно твёрже сжать ручку девайса, и ослабить хват, как только скорость движения стабилизируется, а траектория станет прямолинейной.

Вес, балансирующей в руке конструкции, позволяет легко почувствовать положение камеры относительно горизонта через тактильные ощущения. Именно для улучшения тактильных ощущений, ручка удалена от центра тяжести системы на большее расстояние, чем в профессиональных видеокамерах.

Инверторная технология

Отличительной особенностью таких устройств является отсутствие трансформатора в конструкции прибора. Однако регулировка напряжения осуществляется электронным способом, а поэтому он относится к предыдущему типу, но является как бы отдельным классом.

Если есть желание изготовить самодельный стабилизатор напряжения 220В, схему которого нетрудно достать, то лучше выбрать именно инверторную технологию. Ведь тут интересен сам принцип работы. Инверторные стабилизаторы оснащаются двойными фильтрами, что позволяет минимизировать отклонения напряжения от номинального значения в пределах 0,5%. Поступающий в устройство ток, преобразуется в постоянное напряжение, проходит через весь прибор, а перед выходом снова принимает прежнюю форму.

Фото блоков питания своими руками

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Также рекомендуем просмотреть:

  • Вентилятор своими руками
  • Прикормка своими руками
  • Откатные ворота своими руками
  • Ремонт компьютера своими руками
  • Станок по дереву своими руками
  • Столешница своими руками
  • Брусья своими руками
  • Лампа своими руками
  • Котел своими руками
  • Установка кондиционера своими руками
  • Отопление своими руками
  • Фильтр для воды своими руками
  • Как сделать нож своими руками
  • Усилитель сигнала своими руками
  • Ремонт телевизора своими руками
  • Зарядное для аккумулятора своими руками
  • Точечная сварка своими руками
  • Дымогенератор своими руками
  • Металлоискатель своими руками
  • Ремонт стиральных машин своими руками
  • Ремонт холодильника своими руками
  • Антенна своими руками
  • Ремонт велосипеда своими руками
  • Сварочный аппарат своими руками
  • Холодная ковка своими руками
  • Трубогиб своими руками
  • Дымоход своими руками
  • Заземление своими руками
  • Стеллаж своими руками
  • Светильник своими руками
  • Жалюзи своими руками
  • Светодиодная лента своими руками
  • Нивелир своими руками
  • Замена ремня ГРМ своими руками
  • Лодка своими руками
  • Как сделать насос своими руками
  • Компрессор своими руками
  • Усилитель звука своими руками
  • Аквариум своими руками
  • Сверлильный станок своими руками

Поэтапная настройка

Изготовленный лабораторный блок питания своими руками нуждается в поэтапном включении. Первоначальный запуск проходит с отключенными LM301 и транзисторами. Далее проверяется функция регулирующая напряжение через регулятор Р3.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Если напряжение регулируется хорошо, тогда в схему включаются транзисторы. Их работа тогда будет хорошей, когда несколько сопротивлений R7,R8 начнут балансировать цепь эмиттера. Нужны такие резисторы, чтобы их сопротивление было на максимально низком уровне. При этом тока должно хватать, иначе в Т1 и Т2 его значения будут различаться.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Так же подключение конденсатора С2 может быть неверным. Проведя осмотр и исправив дефекты монтажа, можно на 7 ножку LM301 давать питание. Это допустимо делать с выхода блока питания.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

На последних этапах настраивается Р1, так чтобы он мог работать на максимальном рабочем токе БП. Лабораторный блок питания с регулировкой напряжения отрегулировать не так сложно. В этом деле лучше лишний раз перепроверить монтаж деталей, чем получить КЗ с последующей заменой элементов.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Виды стабилизаторов напряжения

В зависимости от мощности нагрузки в сети и других условий эксплуатации, используются различные модели стабилизаторов:

Феррорезонансные стабилизаторы считаются самыми простыми, в них применяется принцип магнитного резонанса. Схема включает в себя всего два дросселя и конденсатор. Внешне он похож на обычный трансформатор с первичной и вторичной обмотками на дросселях. Такие стабилизаторы имеют большой вес и габариты, поэтому почти не используются для бытовой аппаратуры. Благодаря высокому быстродействию, эти приборы применяются для медицинского оборудования;

Схема феррорезонансного стабилизатора напряжения

Сервоприводные стабилизаторы обеспечивают регулировку напряжения автотрансформатором, реостатом которого управляет сервопривод, получающий сигналы с датчика контроля напряжения. Электромеханические модели могут работать с большими нагрузками, но имеют малую скорость срабатывания. Релейный стабилизатор напряжения имеет секционную конструкцию вторичной обмотки, стабилизация напряжения производится группой реле, сигналы на замыкание и размыкание контактов которых поступают с платы управления. Таким образом, осуществляется подключение нужных секций вторичной обмотки для поддержания выходного напряжения в пределах установленных величин. Скорость регулировки осуществляется быстро, но точность установки напряжения невысокая;

Пример сборки релейного стабилизатора напряжения

Электронные стабилизаторы имеют аналогичный принцип, как и релейные, но вместо реле используются тиристоры, симисторы или полевые транзисторы для выпрямления соответствующей мощности, в зависимости от тока нагрузки. Это значительно повышает скорость переключения секций вторичной обмотки. Бывают варианты схем без трансформаторного блока, все узлы выполнены на полупроводниковых элементах;

Вариант схемы электронного стабилизатора

Стабилизаторы напряжения с двойным преобразованием осуществляют регулировку по инверторному принципу. Эти модели преобразуют переменное напряжение в постоянное, потом обратно в переменное напряжение, на выходе преобразователя формируется 220В.

Вариант схемы инверторного стабилизатора напряжения

Схема стабилизатора не преобразует напряжение сети. Инвертор постоянного напряжения в переменное при любом напряжении на входе генерирует на выходе 220В переменного тока. Такие стабилизаторы совмещают высокую скорость срабатывания и точность установки напряжения, но имеют высокую цену по сравнению с ранее рассмотренными вариантами.

Автоматические стабилизаторы «Лигао 220 В»

Для систем сигнализации является востребованным от стабилизатор напряжения 220В. Схема его построена на работе тиристоров. Использоваться данные элементы способны исключительно в полупроводниковых цепях. На сегодняшний день типов тиристоров существует довольно много. По степени защищенности они делятся на статические, а также динамические. Первый вид используется с источниками электричества различной мощности. В свою очередь динамические тиристоры имеют свой предел.

Если говорить про стабилизатор напряжения (схема показана ниже), то в нем имеется активный элемент. В большей степени он предназначен для нормального функционирования регулятора. Представляет он собой набор контактов, которые способны соединяться. Необходимо это для того чтобы увеличивать или уменьшать предельную частоту в системе. В других моделях тиристоров может иметься несколько. Устанавливаются они между собой при помощи катодов. В результате коэффициент полезного действия устройства можно значительно повысить.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Тонкости регулировки

Потребность в регуляторе напряжения будет в следующих условиях:

  • Необходима регулировка переменного, и постоянного напряжения.
  • Возможность регулировать напряжение в нагрузке.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Каждый перечисленный пункт определяет свой набор радиодеталей в схеме. Но устройство самого простого регулятора основано на переменном резисторе. При регулировке переменного напряжения не создается искажений. С помощью переменного сопротивления возможна регулировка и постоянного тока.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Чтобы напряжение и нагрузка тока была заданного параметра, используют стабилизаторы. Напряжение на выходе сверяют с правильным значением, и при возникновении небольших заданных изменений происходит автоматическое восстановление регулятора.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Можно отыскать множество пошаговых инструкций, как сделать регулятор напряжения. Но самым простым, и понятным вариантом считается устройство на интегральных микросхемах. Удобство изделий позволяет питать светодиоды и другие системы освещения в автомобиле. Для сетевого регулятора нужен преобразователь понижающего типа, а к входу следует подключать выпрямитель.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Очень часто нагрузка может иметь разные параметры, поэтому для подобных случаев без специальных стабилизаторов напряжения не обойтись. Их работа может осуществляться в нескольких режимах.

Для всех устройств электронного типа важно получать стабильное напряжение. Они имеют нелинейные компоненты, встроенные в электрическую цепь.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Имеется регулятор напряжения основанный на тиристоре. Это очень мощный полупроводник, который применяется в преобразовательных приборах больших мощностей. Благодаря специфичному управлению, его используют для коммутации «переменки».

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Разновидности 12В стабилизаторов

Подобные устройства могут быть собраны на транзисторах или на интегральных микросхемах. Их задача – обеспечить значение номинального напряжения Uном в нужных пределах, несмотря на колебания входящих параметров. Наиболее популярны следующие схемы:

  • линейная;
  • импульсная.

Схема линейной стабилизации представляет собой простой делитель по напряжению. Его работа заключается в том, что при подаче на одно «плечо» Uвх, на другом «плече» изменяется сопротивление. Это поддерживает Uвых в заданных пределах.

Важно! При такой схеме при большом разбросе значений между входным и выходным напряжениями происходит падение КПД (некоторое количество энергии переходит в тепло), и требуется применение теплоотводов. Импульсная стабилизация контролируется ШИМ-контроллером. Он, управляя ключом, регулирует длительность токовых импульсов

Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку

Он, управляя ключом, регулирует длительность токовых импульсов. Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку

Импульсная стабилизация контролируется ШИМ-контроллером. Он, управляя ключом, регулирует длительность токовых импульсов. Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку.

К сведению. Импульсные стабилизаторы напряжения (СН) обладают большим КПД, требуют меньшего отвода тепла, но электрические импульсы при работе создают помехи для электронных устройств. Самостоятельная сборка подобных схем имеет существенные сложности.

Классический стабилизатор

Такое устройство имеет в своём составе: трансформатор, выпрямитель, фильтры и узел стабилизации. Стабилизация обычно осуществляется при помощи стабилитронов и транзисторов.

Основную работу выполняет стабилитрон. Это своеобразный диод, который подключается в схему в обратной полярности. Рабочий режим у него – режим пробоя. Принцип работы классического СН:

  • при подаче на стабилитрон Uвх < 12 В элемент находится в закрытом состоянии;
  • при поступлении на элемент Uвх > 12 В он открывается и удерживает заявленное напряжение постоянным.

Внимание! Подача Uвх, превышающего максимальные значения, указанные для определённого вида стабилитрона, приводит к его выходу из строя. Схема классического линейного СН. Схема классического линейного СН

Схема классического линейного СН

Интегральный стабилизатор

Все элементы конструкции таких устройств располагаются на кристалле из кремния, сборка заключена в корпусе интегральной микросхемы (ИМС). Они собраны на базе двух типов ИМС: полупроводниковых и гибридно-плёночных. У первых компоненты твердотельные, у вторых – изготовлены из плёнок.

Главное! У таких деталей всего три вывода: вход, выход и регулировка. Такая микросхема может выдавать стабильно напряжение величиной 12 В при интервале Uвх = 26-30 В и токе до 1 А без дополнительной обвязки.

Схема СН на ИМС

↑ Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676. Блок программы zero ожидает появление спадающего перехода через ноль По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on, R2off, R1on и R1off. 5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

Модели переменного тока

Регулятор переменного тока отличается тем, что тиристоры в нем применяются только триодного типа. В свою очередь, транзисторы стандартно используются полевого вида. Конденсаторы в цепи применяются только для стабилизации. Встретить высокочастотные фильтры в устройствах данного типа можно, но редко. Проблемы с высокой температурой в моделях решаются за счет импульсного преобразователя. Устанавливается он в системе за модулятором. Низкочастотные фильтры используются в регуляторах с мощностью до 5 В. Управление по катоду в устройстве осуществляется за счет подавления входного напряжения.

Стабилизация тока в сети происходит плавно. Для того чтобы справляться с высокими нагрузками, в некоторых случаях применяются стабилитроны обратного направления. Соединяются они транзисторами при помощи дросселя. В данном случае регулятор тока должен быть способным выдерживать максимум нагрузкуи в 7 А. При этом уровень предельного сопротивления в системе обязан не превышать 9 Ом. В этом случае можно надеяться на быстрый процесс преобразования.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Особенности сборки устройства для выравнивания напряжения

Микросхема стабилизирующего ток устройства устанавливается на теплоотводе, для которого подходит пластинка из алюминия. Ее плошать не должна быть меньше 15 кв. см.

Теплоотвод с охлаждающей поверхностью необходим и симисторам. Для всех 7 элементов достаточно одного теплоотвода с площадью не меньше 16 кв. дм.

Чтобы изготавливаемый нами преобразователь переменного напряжения работал, понадобится микроконтроллер. С его ролью отлично справляется микросхема КР1554ЛП5.

Вы уже знаете, что в схеме можно найти 9 мигающих диодов. Все они расположены на ней так, чтобы они попадали в отверстия, которые имеются на лицевой панели устройства. И если корпус стабилизатора не допускает их расположения, как на схеме, то вы можете видоизменить ее так, чтобы светодиоды выходили на ту сторону, которая будет для вас удобна.

Теперь вы знаете, как сделать стабилизатор напряжения на 220 вольт. И если ранее вам уже приходилось делать что-то подобное, то эта работа для вас не окажется сложной. В результате вы сможете сэкономить несколько тысяч рублей на покупке стабилизатора промышленного производства.

Какой стабилизатор напряжения лучше: релейный или симисторный?

Устройства симисторного типа характеризуются небольшими размерами корпуса, а уровень компактности таких приборов вполне сопоставим с моделями электромеханического и релейного типа. Средняя стоимость симисторного устройства по сравнению с качественными релейными аналогичными приборами выше практически в два-три раза.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Релейный стабилизатор “Ресанта 10000/1-ц”

Несмотря на прекрасную скорость переключения и наличие значительного интервала на входных напряжениях, любой релейный прибор является шумным при эксплуатации и характеризуется низкими показателями точности.

Кроме всего прочего, все релейные стабилизаторы имеют некоторые ограничения по уровню мощности, что обусловливается неспособность контактов коммутировать очень большие токи.

Думаете о том, стоит ли подключить счетчик день ночь? Читайте статью о том, выгодны ли двойные тарифы.

Порядок сборки светодиодного фонаря своими руками описан в этой статье.

Наиболее перспективный вид электронных стабилизаторов представлен в настоящее время современными устройствами, которые функционируют в условиях двойного преобразования сетевого напряжения.

Помимо высокой стоимости, такие приборы не обладают серьёзными недостатками. Именно поэтому при выборе стабилизирующего устройства, если стоимость не имеет решающего значения, целесообразно отдавать предпочтение приборам, полностью собранным с использованием качественных полупроводников.

Инверторные стабилизаторы

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборкиСовременные инверторные стабилизаторы Штиль серии «Инстаб» Это наиболее «молодой» вид стабилизаторов – серийное производство начато в конце 2000-х годов. Инновационная конструкция и характеристики, недоступные для моделей других топологий, делают данные устройства прорывом в стабилизации электрической энергии.

Устройство и принцип работы.

Принцип действия данных устройств схож с on-line ИБП и построен на базе прогрессивной технологии двойного преобразования энергии. Сначала выпрямитель превращает входное переменное напряжение в постоянное, которое затем накапливается в промежуточных конденсаторах и подаётся на инвертор, осуществляющий обратное преобразование в переменное стабилизированное выходное напряжение. Инверторные стабилизаторы кардинально отличаются от релейных, тиристорных и электромеханических по внутреннему строению. В частности, в них отсутствует автотрансформатор и любые подвижные элементы, в том числе и реле. Соответственно, стабилизаторы двойного преобразования избавлены от недостатков, присущих трансформаторным моделям.

Преимущества.

Алгоритм работы этой группы устройств исключает трансляцию любого внешнего возмущающего воздействия на выход, что обеспечивает полную защиту от большинства проблем электроснабжения и гарантирует питание нагрузки напряжением идеальной синусоидальной формы со значением максимально приближенным к номинальному (точность ±2%). Кроме того, инверторная топология устраняет все недостатки характерные другим принципам стабилизации электрической энергии и обеспечивает моделям, реализованным на её базе, уникальное быстродействие – стабилизатор реагирует на изменение входного сигнала мгновенно, без задержек во времени (0 мс)!

Другие важные преимущества инверторных стабилизаторов:

  • максимально широкие границы рабочего сетевого напряжения – от 90 до 310 В, при этом идеальная синусоидальная форма выходного сигнала сохраняется во всем указанном диапазоне;
  • непрерывное бесступенчатое регулирование напряжения – исключает ряд неприятных эффектов, связанных с переключением порогов стабилизации в электронных (релейных и полупроводниковых) моделях;
  • отсутствие автотрансформатора и подвижных механических контактов – повышает ресурс работы и снижает массу изделия;
  • наличие входного и выходного фильтров высоких частот – эффективно подавляют возникающие помехи (присутствуют не во всех моделях, характерны в частности для продукции ГК «Штиль» – ведущего производителя инверторных стабилизаторов).

Возникает закономерный вопрос — есть ли недостатки у инверторных устройств? Единственным и в то же время спорным недостатком является более высокая цена. Но учитывая технические требования современной бытовой техники и одновременно сохраняющуюся тенденцию перепадов сетевого напряжения, инверторные стабилизаторы сегодня являются самым экономически оправданным вариантом для постоянного пользования как в частных домах и загородных коттеджах, так и на промышленных объектах. Они гарантируют устойчивое, корректное функционирование дорогостоящей бытовой техники и чувствительных электронных устройств при любом качестве питающей электросети.

Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Рисунок 4 – Схема инверторного стабилизатора напряжения

Подробнее по этой теме читайте ниже:

Инверторные стабилизаторы напряжения «Штиль». Модельный ряд.

Как вам статья?

Читайте также:  Обзор посудомоечной машины Siemens SR64E003RU: качество, проверенное временем
Рейтинг
( Пока оценок нет )
Сантехника и водоснабжение
Комментарии: 1
  1. Борис

    Очень интересная и познавательная статья!

Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: