Схема светодиодной лампы: устройство простейших драйверов

Схемы драйверов и их принцип работы

Чтобы провести успешный ремонт, необходимо четко представлять, как лампа работает. Одним из основных узлов любой светодиодной лампы является драйвер. Схем драйверов для светодиодных ламп на 220 В существует множество, но условно их можно разделить на 3 типа:

  1. Со стабилизацией тока.
  2. Со стабилизацией напряжения.
  3. Без стабилизации.

Только устройства первого типа, по своей сути, являются драйверами. Они ограничивают ток через светодиоды. Второй тип лучше назвать блоком питания для светодиодной ленты. Третий вообще как-то назвать сложно, но его ремонт, как я указывал выше, самый простой. Рассмотрим схемы ламп на драйверах каждого типа.

Драйвер со стабилизацией тока

Драйвер лампы, схему которой ты видишь ниже, собран на интегральном стабилизаторе тока SM2082D. Несмотря на кажущуюся простоту он является полноценным и качественным, да и ремонт его несложен.

Сетевое напряжение через предохранитель F подается на диодный мост  VD1-VD4, а затем, уже выпрямленное, на сглаживающий конденсатор С1. Полученное таким образом постоянное напряжение поступает на светодиоды лампы HL1-HL14, включенные последовательно, и вывод 2 микросхемы DA1.

С первого же вывода этой микросхемы на светодиоды поступает напряжение, стабилизированное по току. Величина тока зависит от номинала резистора R2. Резистор R1 довольно большой величины, шунтирующий конденсатор, в процессе работы схемы не участвует. Он нужен для того, чтобы быстро разрядить конденсатор, когда ты выкрутишь лампочку. В противном случае, взявшись за цоколь, ты рискуешь получить серьезный удар током, поскольку С1 останется заряженным до напряжения 300 В.

Драйвер со стабилизацией напряжения

Эта схема, в принципе, тоже довольно качественная, но подключать ее к светодиодам нужно несколько иначе. Как я уже говорил выше, такой драйвер правильнее было бы назвать блоком питания, поскольку он стабилизирует не ток, а напряжение.

Здесь сетевое напряжение сначала поступает на балластный конденсатор С1, снижающий его до величины примерно 20 В, а затем уже на диодный мост VD1-VD4. Далее выпрямленное напряжение сглаживается конденсатором С2 и подается на интегральный стабилизатор напряжения. Снова сглаживается (С3) и через токоограничивающий резистор R2 питает цепочку светодиодов, включенных последовательно. Таким образом, даже при колебаниях сетевого напряжения ток через светодиоды останется постоянным.

Отличие этой схемы от предыдущей как раз в данном токоограничивающем резисторе. По сути, это схема светодиодной ленты с балластным блоком питания.

Драйвер без стабилизации

Драйвер, собранный по этой схеме, – чудо китайской схемотехники. Тем не менее, если в сети напряжение нормальной величины и не сильно скачет, он работает. Устройство собрано по простейшей схеме и не стабилизирует ни ток, ни напряжение. Оно просто понижает его (напряжение) до примерной нужной величины и выпрямляет.

На этой схеме ты видишь уже знакомый тебе гасящий (балластный) конденсатор, зашунтированный для безопасности резистором. Далее напряжение поступает на выпрямительный мост, сглаживается конденсатором обидно малой емкости – всего 10 мкФ – и через токоограничивающий резистор поступает на цепочку светодиодов.

Что можно сказать о таком «драйвере»? Поскольку он ничего не стабилизирует, напряжение на светодиодах и, соответственно, ток через них напрямую зависят от входного напряжения. Если оно завышено, то лампа быстро сгорит. Если «скачет», то будет мигать и лампочка.

Такое решение обычно используется в бюджетных лампах китайских производителей. Назвать его удачным, конечно, сложно, но оно встречается довольно часто и при нормальном напряжении в сети может работать достаточно долго. Кроме того, такие схемы легко поддаются ремонту.

Рейтинг производителей светодиодных ламп.

Рейтинг составлен на основании данных онлайн магазинов по результатам отзывов потребителей. Данный топ представлен из led ламп с цоколем E27 и средней мощностью 7Вт.OSRAM (4,8 баллов).

Немецкий бренд производит яркие надежные led модели с хорошей системой охлаждения.

Плюсы

  • Низкий коэффициент пульсации (10%);
  • Хороший индекс цветопередачи (80) не нагружают глаза.;
  • Широкий диапазон продукции и цен (от 150 рублей до 1500);
  • Возможность подключения некоторых моделей к «умному дому», но только напрямую, без цоколя. Все модели оснащены стабилизатором напряжения;

Минусы

Обратите внимание на страну производителя данные лампы выпускаются как в России, Китае, так и в самой Германии. Gauss (4.7 балла)

Gauss (4.7 балла).

Российский бренд.

Плюсы

  • Мерцание отсутствует.
  • Имеются мощные led источники света e27 35 Вт
  • Очень высокий коэффициент цветопередачи (выше 90).
  • Самый большой срок службы среди представленных– до 50000 часов.
  • Одни из самых ярких источников света.
  • Имеются модели с необычными формами колбы
  • Доступные цены (от 200 рублей).

Минусы

  • Малая площадь освещения (у большинства моделей),
  • Продажи в основном онлайн.

Navigator (4,6 баллов).

Российский бренд, хотя производство базируется в Китае.

Плюсы

  • Доступность. Модели широко представлены в магазинах страны
  • Огромный ассортимент источников света разных форм и цветов. Имеется ряд моделей для специализированных осветительных приборов
  • Низкие цены (около 200 рублей за штуку).
  • Срок службы 40000 часов
  • Отсутствует мерцание
  • Высокий уровень цветопередачи (89)
  • Работает при перепадах температуры

Минусы

  • Отсутствие в недорогих моделях стабилизатора напряжения
  • Нагрев радиатора

ASD (4,5 балла).

Российский бренд, продукция адаптирована под особенности электроснабжения страны.

Плюсы

  • Имеется большой выбор профессиональных светодиодных источников света
  • Цены низкие
  • Срок эксплуатации 30000 часов
  • Хорошая цветопередача (89)

Минусы

  • Модельный ряд бытовых источников света невелик
  • Плохое охлаждение
  • Довольно высокий процент брака

Philips Led (4,5 балла).

Плюсы

  • Все источники света этой фирмы проходит лабораторные испытания на безопасность для глаз. Это достигается за счет низкого коэффициента мерцания.
  • Источники света этого бренда имеют самую лучшую систему охлаждения.
  • Цены в широком диапазоне: от 200 рублей до 2000.
  • Все модели имеют встроенный стабилизатор напряжения. Многие модели встраиваются в «умный дом».

Минусы

Xiaomi Yeelight (4,5 балла).

Светодиодные источники света китайского бренда Xiaomi.

Плюсы

  • Диапазон цветовой температуры от 1500 до 6500 К, что обеспечивает около 16 миллионов оттенков цветов.
  • Коэффициент пульсации – 10%.
  • Срок службы – 25000 часов.
  • Совместима с «умным домом». Можно управлять через смартфон, Яндекс Алису или Google Assistant.Минусы:

Минусы

Гул при включении на полную яркость
Высокая стоимость (свыше тысячи рублей за штуку).

ЭРА (4,3 балла).

Российский бренд, выпускает продукцию в Китае.

Плюсы

  • Фирма производит одни из самых дешевых лампочек на рынке.
  • Хороший срок службы в 30000 часов.
  • Как и Navigator, модели ЭРА доступны в большинстве магазинов страны. Представлено несколько сотен моделей светильников.
  • Имеют очень хорошее охлаждение.

Минусы

  • Довольно высокий коэффициент мерцания (15-20%)
  • Небольшой угол рассеивания
  • Плохая фиксация в цоколе

Camelion (4,3 балла).

Немецкий бренд, производство в Китае.

Плюсы

  • Большой срок службы 40000 часов
  • Отсутствие мерцание
  • яркий свет
  • Повышенная светоотдача
  • Модельный ряд представлен источниками света разной формы и цветов
  • Есть лампы специального назначения, вплоть до фитоламп
  • Ценовая линейка широкая (от 100 рублей)

Минусы

  • Меньший, чем у других, гарантийный период
  • Большой срок службы обеспечивается, если работать лампа будет по 3 часа в сутки.

Ecola (3 балла).

Совместная российско-китайская фирма.

Плюсы

  • Производится в Китае.
  • Срок службы 30000 часов.
  • Цена (от 100 рублей за штуку).
  • Цветовая температура в 4000 К хорошо подходит для офисных помещений.

Минусы

Как выбрать светодиоды?

Все зависит от того, где вы эти самодельные лампы будете использовать. Если вам надо яркий свет в гостиной, то необходимы сверхяркие приборы в большом количестве. А если для коридора, туалета, ванной или прихожей – достаточно несколько штук.

Все довольно просто – больше светодиодов, больше света. Иногда необходимы просто индикаторные лампы, показывающие работу устройства, или то, что напряжение подано. Такое иногда необходимо на предприятиях и на заводском оборудовании. В таком случае достаточно одного обычного светодиода красного или зеленого цвета. Можно даже использовать советские АЛ307, широко используемые в старых магнитофонах и другой аппаратуры.


Изготовление лампы своими руками

Сложно представить, но даже светодиодную лампу можно сделать своими руками и существенно сэкономить на покупке приборов.

Инструменты и материалы

Качество материалов и инструментов, необходимых для создания лампы на 220 В, играет важную роль. От этого зависят надёжность и безопасность, долговечность изделия.

Своими руками легко сделать лампы направленного света

Для работы нужны такие элементы, как:

  • галогенная лампа без стекла;
  • светодиоды в количестве до 22 штук;
  • быстродействующий клей;
  • медный провод и листовой алюминий, толщина которого составляет 0,2 мм;
  • резисторы, подбирающиеся в зависимости от схемы.

Перед работой необходимо составить схему соединения всех деталей, которая зависит от конкретной ситуации. Для этой цели используют разнообразные онлайн-калькуляторы, позволяющие получить точный результат. При количестве светодиодов более 22 соединение отличается сложностью и требуется особенный подход.

Схема подбирается в зависимости от ситуации

В качестве инструментов используются отвёртка, молоток, дырокол, маленький паяльник. В процессе работы также потребуется небольшая подставка, позволяющая с удобством разместить диоды на отражающем диске.

Пошаговая инструкция изготовления лампы

Изготовление светодиодной лампы на 220 В своими руками не требует профессиональных знаний и сложных инструментов.

  1. Предварительно нужно подготовить неисправную лампу, открыв корпус. Цоколь отсоединяется от него очень аккуратно, а для этого можно использовать отвёртку.
  2. Внутри конструкции присутствует плата пускорегулирующего электронного аппарата, которая понадобится для дальнейшей работы. А также необходимы светодиоды. Верхняя часть изделия имеет крышку с отверстиями. Из неё следует изъять трубки. Из пластика или плотного картона изготавливается основание.
  3. На пластиковой основе светодиоды будут держаться более надёжно, чем на картоне. Поэтому лучше всего использовать кусок пластика.
  4. Питание лампы будет осуществляться с помощью драйвера RLD2–1, который подходит для сети с напряжением в 220 В. При этом можно подключить последовательно 3 белых одноваттных светодиода. Три элемента соединяются параллельно, а затем все цепочки фиксируются последовательно.
  5. Провода в цоколе могут повредиться во время разборки конструкции лампы. В этом случае нужно припаять элементы на место, что обеспечит простую технику дальнейшей сборки изделия.
  6. Кусок пластика нужно разместить также между драйвером и платой. Это позволяет избежать замыкания. При этом можно использовать и картон, ведь светодиодная лампа не греется. После этого конструкция собирается, а прибор вкручивается в патрон и проверяется на работоспособность.

После сборки нужно проверить работоспособность устройства

Мощность такой лампы составляет примерно 3 Ватта. Прибор подключается в сети с напряжением в 220 В и обеспечивает яркое освещение. Лампа эффективна в качестве вспомогательного источника света. На основе этого примера изготовления своими руками легко создать более мощные конструкции.

Делаем драйвер

Устройство стабилизации тока и источник постоянного напряжения — драйвер — присутствует в конструкции лампы, подключаемой к сети с напряжением в 220 В. Без него невозможно создание источника света, а изготовить такой элемент можно своими руками. Для этого следует аккуратно разобрать лампу, отрезать провода, ведущие к цоколю и к стеклянным колбам. При этом стоит учесть, что один из окольных проводов может иметь резистор. В таком случае отрезать элемент следует за резистором, так как он нужен при создании драйвера.

После отсечения проводов остается такая деталь

Каждый вариант платы отличается в зависимости от производителя, мощности устройства и других особенностей. Для светодиодов мощностью 10 Вт нет необходимости переделывать драйвер. Если же лампа отличается интенсивностью потока света, то лучше всего взять преобразователь от прибора большей мощности. На дроссель лампы в 20 Вт следует намотать 18 витков эмальпровода, а затем подпаять его вывод к диодному мосту. Далее на лампу подаётся напряжение и проверяется мощность на выходе. Так можно создать изделие, характеристики которого соответствуют требованиям.

Видео: изготовление светодиодной лампы своими руками

https://youtube.com/watch?v=ZlP3mgKIzRw

Сделать светодиодную лампу на 220 В своими руками легко, но предварительно нужно определить необходимую мощность, схему и подобрать все элементы. Далее процесс не вызывает трудностей даже у начинающих мастеров. В результате получится экономичное и надёжное устройство для освещения любых помещений.

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача — создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме — импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие — это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:

маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе

КПД от 90 до 98%

напряжение питания можно подавать в большом разбросе

при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи


Есть и недостатки:

усложненность сборочной схемы

сложная конструкция

если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования

Проще говоря, блок питания что обычный, что импульсный — это устройство у которого на выходе строго одно напряжение. Его конечно можно «подкрутить», но в не больших диапазонах.

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

Как подобрать драйвер для светодиодов. Способы подключения LED

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:

  1. Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА. Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением. 
  2. Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой. 
  3. Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки. Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения

Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

Как подобрать драйвер для светодиодов

Разобравшись с принципом работы led driver, осталось научиться их правильно выбирать. Если ты не забыл основ электротехники, полученных в школе, то дело это нехитрое. Перечислим основные характеристики преобразователя для светодиодов, которые будут участвовать в выборе:

  • входное напряжение;
  • выходное напряжение;
  • выходной ток;
  • выходная мощность;
  • степень защиты от окружающей среды.

Прежде всего, необходимо решить, от какого источника будет питаться твой светодиодный светильник. Это может быть сеть 220 В, бортовая сеть автомобиля или любой другой источник как переменного, так и постоянного тока. Первое требование: то напряжение, которое ты будешь использовать, должно укладываться в диапазон, указанный в паспорте на драйвер в графе «входное напряжение». Кроме величины, нужно учесть и род тока: постоянный или переменный. Ведь в розетке, к примеру, ток переменный, а в автомобиле – постоянный. Первый принято обозначать аббревиатурой АС, второй DC. Почти всегда эту информацию можно увидеть и на корпусе самого прибора.

Далее переходим к выходным параметрам. Предположим, у тебя есть три светодиода на рабочее напряжение 3.3 В и ток 300 мА каждый (указано в сопроводительной документации). Ты решил сделать настольную лампу, схема соединения диодов последовательная. Складываем рабочие напряжения всех полупроводников, получаем падение напряжения на всей цепочке: 3.3 * 3 = 9.9 В. Ток при таком соединении остается тем же – 300 мА. Значит, тебе нужен драйвер с выходным напряжением 9.9 В, обеспечивающий стабилизацию тока на уровне 300 мА.

Конечно, именно на это напряжение прибор найти не удастся, но это и не нужно. Все драйверы рассчитаны не на конкретное напряжение, а на некоторый диапазон. Твоя задача – уложить свое значение в этот диапазон. А вот выходной ток должен точно соответствовать 300 мА. В крайнем случае он может быть несколько меньше (лампа будет светить не так ярко), но никогда не больше. Иначе твоя самоделка сгорит сразу либо через месяц.

Идем дальше. Выясняем, какой мощности драйвер нам нужен. Этот параметр должен как минимум совпадать с потребляемой мощностью нашей будущей лампы, а лучше превышать это значение на 10-20%. Как рассчитать мощность нашей «гирлянды» из трех светодиодов? Вспоминаем: электрическая мощность нагрузки – это ток, идущий через нее, умноженный на приложенное напряжение. Берем калькулятор и перемножаем общее рабочее напряжение всех светодиодов на ток, предварительно переведя последний в амперы: 9.9 * 0.3 = 2.97 Вт.

Последний штрих. Конструктивное исполнение. Прибор может быть как в корпусе, так и без него. Первый, естественно, боится пыли и влаги, и в плане электробезопасности он не лучший вариант. Если ты решил встроить драйвер в лампу, корпус которой является хорошей защитой от окружающей среды, тогда подойдет. Но если корпус лампы имеет кучу вентиляционных отверстий (светодиоды должны охлаждаться), а само устройство будет стоять в гараже, то лучше выбрать источник питания в собственном корпусе.

Итак, нам нужен светодиодный драйвер со следующими характеристиками:

  • питающее напряжение – сеть 220 В переменного тока;
  • выходное напряжение – 9.9 В;
  • выходной ток – 300 мА;
  • выходная мощность – не менее 3 Вт;
  • корпус – пылевлагозащитный.

Отправляемся в магазин и смотрим. Вот он:

Причем не просто подходящий, а идеально соответствующий запросам. Слегка пониженный выходной ток продлит жизнь светодиодов, но на яркости их свечения это абсолютно никак не отразится. Потребляемая мощность упадет до 2.7 Вт – будет запас мощности драйвера.

Светодиодный драйвер своими руками для мощных светодиодов

Это одна из простейших схем, которую можно собрать своими руками из подручных материалов.

Q1 – N-канальный полевой транзистор (IRFZ48 или IRF530);

Q2 – биполярный npn-транзистор (2N3004, либо аналог);

R2 – 2,2 Ом, резистор мощностью 0,5-2 Вт;

Входное напряжение до 15 В;

Драйвер получится линейным и КПД определяется формулой: VLED / VIN

где VLED – падение напряжения на светодиоде,

VIN – входное напряжение.

Согласно законов физики чем больше разница между входным напряжением и падением на диоде и чем больше ток драйвера, тем сильнее греется транзистор Q1 и резистор R2.

VIN должно быть больше VLED на, как минимум, 1-2В.

Повторюсь, что схема очень простая и ее даже можно собрать простым навесным монтажом и она БУДЕТ работать без проблем.

Расчеты:
– Ток светодиода примерно равен: 0.5 / R1
– Мощность R1: мощность, рассеиваемая резистором, составляет приблизительно: 0,25 / R3. выберите значение резистора не менее двукратной рассчитанной мощности, чтобы резистор не раскалился.

Так, для тока светодиода 700мА:
R3 = 0,5 / 0,7 = 0,71 ом. Ближайший стандартный резистор – 0,75 ом.
Мощность R3 = 0,25 / 0,71 = 0,35 Вт. нам понадобится по крайней мере 1/2 ватта номинального резистора.

Модификации схемы с дополнительным резистором и стабилитроном

Модификация схемы с дополнительным резисторомМодификация схемы с диодом Зенера

А теперь будем собирать светодиодный драйвер своими руками, используя некоторые модификации. Данные модификации имеют изменения касаемо ограничения напряжения первой цепи. Допустим, нам надо держать NFET (G-контакт) меньше 20 В и если мы желаем использовать источник питания выше 20 В. Данные изменения необходимы, если мы будем использовать с схемой микроконтроллер или подключать компьютер.

В первой схеме добавлен резистор R3, а во второй этот же резистор заменен на D2 – стабилитрон.

Если мы хотим установить напряжение G-pin примерно на 5 вольт – используйте стабилитрон 4,7 или 5,1 вольта (например: 1N4732A или 1N4733A).

Если входное напряжение ниже 10В, замените R1 на 22кОм.

Используя данные модификации можно получить возможность работы схемы с напряжением 60 В.

Используя данные модификации теперь можно преспокойно использовать микроконтроллеры, ШИМ или вообще подключаться к компьютеру.

Данные вещи рассматривать не буду. Но если заинтересует, то добавлю статью и такими схемами.

Модификация схемы для “диммирования” светодиодов

Рассмотрим еще одну модификацию. Данный собранный драйвер для светодиодов своими руками позволит “диммировать” светодиоды. Вернее это не будет полноценным диммером. Здесь основную роль играют 2 резистора, которые рассчитаны таким образом, что при включении-выключении переключателя яркость диода будет меняться. Т.е. “по – русски – диммер с костылем”. Но и такой вариант имеет право на существование. Калькуляторы для расчетов резисторов Вы всегда сможете найти на нашем портале и воспользоваться ими.

Кто-то скажет – что “можно использовать” подстроечный резистор. Могу поспорить – на такие малые величины, к сожалению, нет подстроечных резисторов. Для этого есть совершенно другие схемы.

Светодиодный драйвер — что это такое

Прямой перевод слова «драйвер» означает «водитель». Таким образом, драйвер любой светодиодной лампы выполняет функцию управления подающимся на устройство напряжением и регулирует параметры освещения.

Рисунок 1. Светодиодный драйвер

Светодиоды это электрические приборы, способные излучать свет в некотором спектре. Чтобы прибор работал правильно, необходимо подавать на него исключительно постоянное напряжение с минимальными пульсациями. Условие особенно актуально для мощных светодиодов. Даже минимальные перепады напряжения способны вывести прибор из строя. Незначительное снижение входного напряжения мгновенно отразится на параметрах светоотдачи. Превышение установленного значения приводит к перегреву кристалла и его перегоранию без возможности восстановления.

Заключение

Стоимость светодиодных ламп медленно, но верно снижается. Однако цена все же остается высокой. Не каждому по карману менять некачественные, но дешевые, лампы или покупать дорогостоящие. В этом случае ремонт таких осветительных приборов — неплохой выход

Если соблюдать  правила и меры предосторожности, то экономия составит приличную сумму

Лампа «кукуруза» дает больше света, но и потребление энергии у нее выше

Надеемся, что информация, изложенная в сегодняшней статье, будет полезна читателям. Вопросы, возникшие по ходу прочтения, можно задать в обсуждениях. Мы ответим на них как можно полно. Если у кого-либо был опыт подобных работ, будем благодарны, если Вы им поделитесь с другими читателями.

А напоследок, уже по традиции, короткое познавательное видео по сегодняшней теме:

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий