Альтернативные источники энергии: обзор технологий

Введение

Вся современная мировая экономика зависит от богатств, накопленных еще во времена динозавров: нефти, газа, угля и прочих видов ископаемого топлива. Большинство действий в нашей жизни: от поездки в метро до подогревания чайника на кухне, в конечном итоге, требуют сжигания этого доисторического наследства. Основная проблема в том, что эти легкодоступные энергетические ресурсы не возобновляются. Рано или поздно человечество выкачает из земных недр всю нефть, сожжет весь газ и выкопает весь уголь. На чем тогда будем греть чайники?

Не стоит также забывать и об отрицательном экологическом воздействии сжигания топлива. Увеличение содержания парниковых газов в атмосфере приводит к увеличению средней температуры на всей планете. Продукты сгорания топлива загрязняют воздух. Жители крупных городов особенно хорошо на себе это чувствуют.

Все мы задумываемся о будущем, пусть даже это будущее наступит не при нас. Мировое сообщество уже давно осознало ограниченность запасов ископаемого топлива. И отрицательное воздействие их использования на экологию. Ведущие государства уже сейчас внедряют программы постепенного перехода на экологически чистые и возобновляемые источники энергии.

По всему миру человечество ищет и постепенно внедряет замену ископаемому топливу. Уже давно во всем мире работают солнечные, ветряные, приливные, геотермальные и гидроэлектростанции. Казалось бы, что мешает прямо сейчас обеспечить с их помощью все потребности человечества?

На самом деле у альтернативной энергетики много проблем. Например, проблема географического распределения энергетических ресурсов. Ветряные электростанции строятся только в районах, где часто дуют сильные ветра, солнечные – где минимальное количество пасмурных дней, гидроэлектростанции – на крупных реках. Нефть, конечно, тоже есть не везде, но ее доставить проще.

Вторая проблема альтернативной энергетики – нестабильность. На ветряных электростанциях выработка зависит от ветра, который постоянно меняет скорость или вообще затихает. Солнечные электростанции плохо работают в пасмурную погоду и вообще не работают ночью.

Ни ветер, ни Солнце не учитывают нужды потребителей энергии. В тоже время выработка энергии тепло- или атомной электростанции постоянна и легко регулируется. Решить данную проблему может только строительство огромных хранилищ энергии, для создания резерва на случай низкой выработки. Однако это очень сильно удорожает всю систему.

Из-за этих и многих других сложностей замедляется развитие альтернативной энергетики в мире. Сжигать ископаемое топливо по-прежнему проще и дешевле.

Однако если в масштабах мировой экономики альтернативные источники энергии и не дают большой выгоды, то в рамках отдельного дома они могут быть весьма привлекательны. Уже сейчас многие ощущают на себе постоянное увеличение тарифов на электроэнергию, тепло и газ. С каждым годом энергетические компании все глубже залазят в карман обычных людей.

Эксперты международного венчурного фонда I2BF представили первый обзор рынка возобновляемой энергетики. По их прогнозам, через 5–10 лет технологии альтернативной энергетики станут конкурентоспособнее и получат массовое распространение. Уже в настоящее время разрыв в стоимости альтернативной и традиционной энергии быстро сокращается (www.active-house.ru).

Под стоимостью энергии подразумевается цена, которую хочет получить производитель альтернативной энергии, чтобы за время жизни проекта компенсировать свои капитальные расходы и обеспечить доходность в 10% на вложенный капитал. В эту цену также будет включена стоимость долгового финансирования, так как большинствовлечением серьезного рычага заемных средств.

Приведенный график иллюстрирует оценку различных видов альтернативной и традиционной энергетики во II квартале 2011 г. (рис. 1).

 
Рис. 1.Оценка различных видов альтернативной и традиционной энергетики

По приведенным цифрам самой низкой стоимостью из всех видов альтернативной энергетики обладает геотермальная энергия, а также энергия, образующаяся при сжигании мусора и свалочного газа. По сути, они уже могут напрямую конкурировать с традиционной энергетикой, но лимитирующим фактором для них служит ограниченное количество мест, где можно реализовать эти проекты.

Для тех, кто хочет получить независимость от капризов энергетиков, кто хочет внести свой вклад в развитие альтернативной энергетики, кто просто хочет немного сэкономить на энергии, и написана эта книга.

Из книги В. Германович, А. Турилин «Альтернативные источники энергии. Практические конструкции по использованию энергии ветра, солнца, воды, земли, биомассы».

Продолжение читайте здесь

Есть ли будущее у альтернативных источников энергии

Альтернативные источники возобновляемой энергии достаточно интересное и перспективное направление. К примеру, существует несколько эффективных приёмом выработки воды из воздуха. Правда здесь необходимо использовать генератор. Будут ли найдены новые подходы к решению этих проблем и к усовершенствованию методик – покажет время.

Получится ли использовать ресурсы с умом – большой вопрос

Watch this video on YouTube

Предыдущая Инженерия️ Реле напряжения 220 В для дома: как правильно организовать защиту бытовой техники
Следующая Инженерия Нужно ли подавать данные по счетчикам воды в 2019 году: и что будет, если не сделать это вовремя?

Виды альтернативных источников энергии.

Энергия ветра, солнца, воды, биотопливо, тепло Земли относительно неисчерпаемы и возобновимы. Преимущества альтернативных источников энергии неоспоримы, поскольку они сохраняют природные ресурсы. Кроме того, они в гораздо большей мере соответствуют требованиям экологической безопасности.

Ветровая энергетика.

Принцип использования силы ветра заключается в превращении кинетической энергии в электрическую, тепловую, механическую. Для получения электрической энергии используют ветровые генераторы. Они могут иметь различные технические параметры, размеры, конструкции, горизонтальную или вертикальную ось вращения. Паруса – классический пример использования силы ветра в морском транспорте, а ветряная мельница – преобразования в механическую энергию.

Диаметр лопастей и высота их расположения определяют мощность ветрогенератора. При силе ветра от 3 м/с генератор начинает вырабатывать ток и достигает максимальной величины при 15 м/с. Сила ветра свыше 25 м/с является критической – генератор отключается.

Гелиоэнергетика — дар Солнца.

Солнечная энергия как альтернативный источник энергии – естественное продолжение жизнетворящей миссии Солнца на нашей планете. Но пока человечество не научилось использовать ее напрямую. В настоящее время в качестве преобразователей солнечной энергии в электрическую применяют солнечные батареи, а для тепловой – солнечные коллекторы. Кроме того, в некоторых случаях используют совмещение двух видов.

Гелиотехнология заключается в нагреве поверхности солнечными лучами и в использовании нагретой воды для горячего водоснабжения, отопления или использования в паровых электрогенераторах. Для преобразования энергии солнца в тепловую используют солнечные коллекторы. Их общая мощность зависит от количества и мощности отдельных устройств, которые включены в систему солнечной или тепловой станции.

Солнечные батареи подразделяют на:

  • кремниевые
  • пленочные

Наибольшим спросом в настоящее время пользуются батареи с использованием кристаллов кремния, а самые удобные – пленочные. Кремниевые панели являются одним из лучших вариантов для частного дома.

ГЭС — использование силы воды.

Принцип действия турбин на гидроэлектростанциях заключается в воздействии силы воды на лопасти гидротурбины, которая вырабатывает электричество. Иногда к альтернативным видам энергии относят лишь те ГЭС, где не использованы мощные плотины, а выработка тока происходит под влиянием естественного течения воды. Это связано со значительным негативным воздействием мощных ГЭС на природные речные ландшафты, их обмелением и катастрофическими наводнениями.

Не вызывает возражений экологов использование естественной энергии морских и океанических приливов. Преобразование кинетической энергии в электрическую в этом случае происходит на специальных приливных станциях.

Геотермальная энергетика — тепло Земли.

Поверхность Земли излучает тепло не только в местах выброса горячих сейсмических источников, как, например, на Камчатке, но и практически во всех регионах планеты. Для извлечения тепла земли используют специальные тепловые насосы, а затем его преобразуют в электрическую энергию или используют как тепловую. Принцип действия установок базируется на законах термодинамики и физических законах поведения жидкостей и газа, в частности, фреона.

Тип конструкции насоса определяет первичный источник энергии, например, « грунт- воздух» или «грунт — вода».

Биотопливо.

Принцип получения биотоплива основан на переработке органических продуктов с помощью специальных установок. В ходе переработки вырабатывается тепловая или электрическая энергия. Виды биотоплива могут иметь жидкое, твердое или газообразное состояние. К твердым, например, относятся топливные брикеты, жидким – биоэтанол, к газообразным – биогаз. К его разновидностям относится свалочный газ, который образуется на свалках. Использование биогаза старых свалок помогает решить проблемы переработки отходов.

Альтернативный источник энергии: что это и зачем он нужен

По сей день энергетика базируется на отлично разработанных и проверенных путях добычи электричества. Ими являются всем известные ядерные, электро — и гидростанции. Все они работают с применением ресурсов нашей планеты, которые рано или поздно будут исчерпаны, либо задействуют реакции, способные принести непоправимый вред.

В 2017 году процент использования этих ресурсов распределился так:

  • 39,3% — уголь;
  • 22,9% — природный газ;
  • 16% — вода;
  • 10,6% — ядерная энергия;
  • 4,1% — нефть.

Сегодня эта перспективная сфера проводит поиски веществ и процессов в окружающем мире, способных:

  • возобновлять свой ресурс (т.е. быть неисчерпаемыми); 
  • представлять полную замену традиционным по качеству;
  • быть экономичными;
  • не вредить экологии.

Что не так с традиционными источниками энергии?

Уголь, нефть и газ пока не находят себе полной замены в производстве необходимой человечеству энергии. Однако их запасы ограничены и не восстанавливаются. 

Например, для создания нефти и газа наша Земля потратила до 350 миллионов лет, а мы исчерпали их ресурс  с куда большей скоростью.

Около 90% энергии на планете в 2010 году производилось путем сжигания ископаемого и биотоплива из растительного или животного сырья. И до 2040 года доля такого производства не упадет ниже 80%. При этом растет энергопотребление: до 40-го года — на 56%.

Еще в 2012 году ученые обозначили: весь запас газа на планете закончится к 2052 году, а нефть продержится чуть дольше — до 2060 года. То есть уже наши дети могут застать время, когда нефтетанкер или газопровод не пригодятся, а леса будут вырублены.

Вредные выбросы в атмосферу, связанные с продуктами горения и выработкой ядерной энергии, являются уничтожителями озонового слоя и проводниками глобального потепления.

Таким образом, вся современная цивилизация, как бы ни отмахивались от этого политики и нефтедобытчики, стоит перед глобальным вопросом — какой источник энергии заменит традиционные, сохраняя окружающую среду.

Тепловая электроэнергетика

Самая распространенная отрасль энергетики в России. Тепловые электростанции в стране производят более 1000 МВт, используя в качестве перерабатываемого сырья уголь, газ, нефтепродукты, сланцевые залежи и торф. Вырабатываемая первичная энергия в дальнейшем преобразуется в электричество. Технологически у таких станций масса преимуществ, которые и обуславливают их популярность. К ним можно отнести нетребовательность к условиям эксплуатации и легкость технической организации рабочего процесса.

Объекты тепловой энергетики в виде конденсационных сооружений и теплоэлектроцентралей могут возводиться прямо в районах добычи расходного ресурса или местах нахождения потребителя. Сезонные колебания никак не влияют на стабильность функционирования станций, что делает такие источники энергии надежными. Но есть и недостатки у ТЭС, к которым можно отнести применение исчерпаемых топливных ресурсов, загрязнение окружающей среды, необходимость подключения больших объемов трудовых ресурсов и др.

Что выбрать: возобновляемые источники энергии или энергетику атома?

Исторически так сложилось, что атомная, угольная и гидроэнергетики являются массовыми источниками получения энергии

Поэтому, не беря во внимание тот факт, что многие страны мира вплотную занимаются развитием сектора ВЭ, руководством РФ к началу 2020 года было запланировано получение лишь 4,5% энергии от возобновляемой энергетики, понимая, что запасы углеводородного сырья не безграничны

Правительство России рассчитывает на долгосрочное получение энергии от плутониевой и термоядерной энергетики; такие источники энергии не до конца исследованы и представляют реальную угрозу человечеству. Это относится к развитию и применению всей атомной энергетики.

С целью большего исследования атомной энергетики во Франции в 2007 году было начато строительство экспериментального термоядерного реактора, имеющего международное значение.

Проект был основан группой из нескольких стран, в составе которой присутствует и Россия. Основной целью создания подобного проекта было доказательство возможного коммерческого применения энергии, полученной при термоядерном синтезе, как источника электрической энергии. Решение этого вопроса до теперешнего времени не было найдено.

Согласно расчетам ученых, занимающихся изучением термоядерных процессов, полученный от них объем энергии к 2100 году не сможет превысить планку в 100 ГВт, что является низким показателем решения проблем человечества, связанных с получением электроэнергии. В качестве примера можно взять тот факт, что современные мировые электростанции дают 4000 ГВт электроэнергии.

Единственным путем решения проблемы получения электроэнергии является переход человечества на источники возобновляемой энергетики с параллельным применением технологий, способствующих сбережению электроэнергии. Достоинством такого перехода будет сохранение климата планеты. Все необходимые финансы для начала данного процесса имеются.

Альтернативная энергетика в современной России

По сравнению с предыдущими годами альтернативная энергетика в России развивается быстрее, но не является преобладающей. Сегодня в стране наибольшая часть энергии добывается с помощью традиционных источников.

Солнечные электростанции

Солнечная электростанция на Урале

Потенциалом для добычи солнечной электроэнергии обладают южные районы страны, а также Западная, Восточная Сибирь и Дальний Восток. В России добывать энергию от Солнца перспективно, поэтому проекты с этим направлением получают государственную поддержку.

ГЭС и приливные электростанции

Россия активно использует водный потенциал для получения электроэнергии: по данным на 2017 год в стране имеется 15 электростанций с мощностью выше 1000 Мегаватт, и также сотни станций с меньшей мощностью. Энергия, выработанная на ГЭС, стоит в два раза меньше, чем выработанная на ТЭС.

Приливные станции требуют больших финансов, поэтому развитие этого направления в РФ не происходит. По прогнозам ученых ПЭС могли бы составить пятую часть добываемой электроэнергии в России.

Ветровые установки

Устанавливать генераторы с горизонтальной осью вращения в России невозможно из-за низкой скорости ветра. Однако часто применяются сооружения с вертикальной осью вращения.

Ветряная электростанция в Ульяновской области

По данным на 2018 год в России суммарная мощность ветровых установок составила 134 Мегаватт. Крупнейшая электростанция в Ульяновской области (мощность — 35 Мегаватт).

Геотермальные станции

В России действуют 5 геотермальных электростанций, три из которых расположены на Камчатке. По данным на 2016 год на этом полуострове ГеоЭС вырабатывает 40% потребляемой электроэнергии.

Применение биотоплива

В России также организовано производство топливо. При этом стране выгоднее разрабатывать твердое биотопливо, чем жидкое. Сейчас производство осуществляется на заводе во Владивостоке.

АЭС

Россия ведет добычу электроэнергии с помощью ядерной энергии и продолжает развиваться в этом направлении. Строятся новые станции, применяются новые способы добычи. По данным 2019 года в России действует 10 атомных электростанций. РФ занимает второе место в мире по мощности генерации электроэнергии с помощью АЭС, первенство в этой отрасли получила Китайская Народная Республика.

Энергия ветра

Ветровые электростанции – перспективный способ получения энергии, особенно в тех местах, где направление ветра постоянно.

Способ получения такой энергии не загрязняет природную среду. Однако прослеживается зависимость от непостоянства направлений и силы ветра. Хотя эту зависимость есть возможность частично сгладить установкой маховиков и разнообразных аккумуляторов.

Но строительство, содержание, ремонт ветровых электростанций обходится недешево. К тому же эксплуатация их сопровождается шумом, мешает птицам и насекомым, отражает радиоволны вращающимися частями.

Альтернативная энергетика для дата-центров

Владельцы ЦОДов все настойчивей интересуются альтернативными источниками электроэнергии. Сохранить темпы прироста мощностей здесь можно лишь существенно сокращая затраты на развертывание, содержание и охлаждение дата-центров. Вариантов несколько.

Например, тепло, выделяемое при работе серверов, можно направлять на обогрев помещений. Так, в 2015 году Яндекс обогрел целый город в Финляндии. Поставляя городу тепло, Яндекс получил возможность возместить часть трат на электроэнергию.

Охлаждение дата-центров  — одна из самых прожорливых статей расходов IT-компаний. В среднем на охлаждение приходится 45% энергозатрат.

Оригинальный способ сэкономить на охлаждении оборудования — использовать «фрикулинг». Или, попросту говоря, охлаждать серверы воздухом с улицы. Для России, где большую часть года на улице холодно, это особенно актуально.

Еще один способ охлаждения воздуха в ЦОД, позволяющий сэкономить на расходах  энергии — метод адиабатического охлаждения. В этом случае для снижения температуры распыляют воду. При испарении она забирает тепло и таким нехитрым способом снижает температуру воздуха.

В любом случае, перед тем, как экспериментировать, желательно провести подробный энергоаудит. Его результаты позволят проанализировать состояние потребления энергии и определить возможности экономии энергоресурсов.

Зачем нужны альтернативные источники энергии

Когда исчерпаемые источники энергии (ископаемые топлива) закончатся, человечеству придется перейти на АИЭ (альтернативные источники энергии). По данным на 2017 год 35% вырабатываемой в России электроэнергии добыты безуглеродным способом — на АЭС и ГЭС.

Использовать традиционные источники энергии проблематично по следующим причинам:

  • ТЭС использует топливо, которое закончится в ближайшем будущем. По худшим оценкам это произойдет через 30 лет;
  • Стоимость ископаемого топлива растет, поэтому поднимается цена на электроэнергию;
  • Продукты производства электроэнергии загрязняют окружающую среду;
  • Тепло, выделяемое на станциях, вызывает глобальное потепление.

У человечества один путь — переход на АИЭ.

Энергия приливов и отливов

Преобразование энергии приливов и отливов в электроэнергию производится на приливных электрических станциях двумя способами:

  1. Первый способ по принципу преобразования энергии аналогичен преобразованию энергии на гидроэлектростанции путем вращения турбины, связанной с электрогенератором;
  2. При втором способе используется энергия движения воды; данный способ основан на перепаде уровня воды при приливах и отливах.

The Pros

  • Солнечная энергия — это возобновляемый ресурс. Пока Солнце существует, его энергия достигнет Земли.
  • Выработка солнечной энергии не приводит к загрязнению водой или воздухом, поскольку отсутствует химическая реакция от сжигания топлива.
  • Солнечная энергия может использоваться очень эффективно для практических целей, таких как отопление и освещение.
  • Преимущества солнечной энергии часто видны для обогрева бассейнов, курортов и резервуаров для воды во всем мире.

The Cons

  • Солнечная энергия не производит энергию, если солнце не светит. Ночные и облачные дни серьезно ограничивают количество произведенной энергии.
  • Солнечные электростанции могут быть очень дорогими для сборки.

Основные виды возобновляемой энергетики

Энергия солнца

Солнечная энергия считается ведущим и экологически чистым источником энергии. На сегодня для получения электроэнергии разработаны и используются термодинамический и фотоэлектрический метод. Подтверждается концепция работоспособности и перспективности наноантенн. Солнце, являясь неистощимым источником экологически чистой энергии, вполне может обеспечить потребности человечества.

Энергия ветра

Давно и успешно используется людьми энергия ветра, ветряков. Ученые разрабатывают новые и совершенствуют имеющиеся ветряные электростанции. Снижая затраты и повышая КПД ветряков. Особую актуальность они имеют на побережьях и в местностях с постоянными ветрами. Преобразуя кинетическую энергию воздушных масс в дешевую электрическую энергию, ветряные электростанции уже сегодня вносят существенный вклад в энергосистему отдельных стран.

Геотермальная энергетика

Источники геотермальной энергии используют неисчерпаемый источник — внутреннее тепло Земли. Существует несколько рабочих схем, не меняющих суть процесса. Природный пар очищают от газов и подают в турбины, вращающие электрогенераторы. Подобные установки работают по всему миру. Геотермальные источники дают электричество, греют целые города и освещают улицы. Но мощность геотермальной энергетики использована очень мало, а технологии получения имеют низкий КПД.

Приливная и волновая энергетика

Приливная и волновая энергетика — это бурно развивающийся способ преобразования потенциальной энергии движения водяных масс в электрическую энергию. Имея высокий коэффициент преобразования энергии, технология имеет большой потенциал. Правда, может использоваться только на побережьях океанов и морей.

Биомассовая энергетика

Процесс разложения биомассы приводит к выделению газа имеющим в своем составе метан. Очищенным, он используется для выработки электроэнергии, обогрева помещений и других хозяйственных нужд. Существуют небольшие предприятия, полностью обеспечивающие свои энергетические потребности.

Энергия электромагнитного солнечного излучения

Она может использоваться для выработки как электроэнергии, как и тепловой энергии. Прямое преобразование солнечной радиации в электроэнергию производится как путем прямого преобразования за счет явления внутреннего фотоэффекта на фотоэлектрических панелях, так и косвенно с использованием термодинамических методов (получение пара с высоким давлением).

Солнечная электростанция

Получение тепловой энергии из солнечной производится за счет поглощения данной энергии и дальнейшего нагрева поверхности и теплоносителя, как специальными коллекторами, так и при помощи использования приемов «солнечной архитектуры».

Совокупность установок для преобразования энергии Солнца составляет солнечную электростанцию.

Pros

Ветровая энергия не производит загрязнения, которое может загрязнять окружающую среду. Поскольку никаких химических процессов не происходит, как при сжигании ископаемого топлива, вредных побочных продуктов не осталось.

  • Поскольку ветрогенерация является возобновляемым источником энергии, мы никогда не закончим ее.
  • Сельское хозяйство и выпас скота все еще могут иметь место на земле, занятой ветряными турбинами, которая может помочь в производстве биотоплива.
  • Ветровые фермы могут быть построены за пределами берега.

Устройство и использование солнечных коллекторов

Примитивный солнечный коллектор представляет собой пластину из металла черного цвета, помещенную под тонкий слой прозрачной жидкости. Как известно из школьного курса физики – темные предметы нагреваются сильнее, чем светлые. Эта жидкость при помощи насоса движется, охлаждает пластину и нагревается при этом сама. Контур с нагретой жидкостью можно поместить в бак, подключенный к источнику холодной воды. Нагревая воду в баке, жидкость из коллектора охлаждается. А затем и возвращается обратно. Таким образом, эта энергосистема позволяет получить постоянный источник горячей воды, а в зимнее время ещё и горячие батареи отопления.

Существует три вида коллекторов, отличающихся устройством

На сегодняшний день существует 3 типа таких устройств:

  • воздушные;
  • трубчатые;
  • плоские.

Воздушные

Воздушные коллекторы состоят из пластин темного цвета

Воздушные коллекторы представляют собой пластины чёрного цвета, закрытые стеклом или прозрачным пластиком. Вокруг этих пластин естественно или принудительно циркулирует воздух. Теплый воздух применяется для обогрева комнат в доме или же для сушки белья.

Достоинством является предельная простота конструкции и низкая стоимость. Единственным недостатком является применение принудительной циркуляции воздуха. Но можно обойтись и без неё.

Трубчатые

Плюс такого коллектора — простота и надежность

Трубчатые коллекторы имеют вид нескольких выстроенных в ряд стеклянных трубок, покрытых изнутри светопоглощающим материалом. Они соединены в общий коллектор и через них циркулирует жидкость. Такие коллекторы имеют 2 способа передачи полученной энергии: прямой и косвенный. Первый способ используется в зимнее время. Второй же применяется круглогодично. Существует вариация с использованием вакуумных трубок: одна вставляется в другую и между ними создается вакуум.

Это изолирует их от окружающей среды и лучше сохраняет полученное тепло. Достоинствами являются простота и надёжность. К недостаткам можно отнести высокую стоимость установки.

Плоские

Чтобы сделать работу коллекторов эффективнее, инженеры предложили использовать концентраторы

Плоский коллектор – самый распространенный тип. Именно он послужил примером для объяснения принципа действия этих устройств. Достоинством этой разновидности являются простота и дешевизна в сравнении с другими. Недостатком является значительная потеря тепла, чем другие подтипы не страдают.

Чтобы улучшить уже существующие гелиосистемы инженеры предложили применять подобие зеркал, названное концентраторами. Они позволяют поднять температуру воды со стандартных 120 до 200 C°. Этот подвид коллекторов получил название концентрационных. Это один из самых дорогостоящих вариантов исполнения, что, несомненно, является недостатком.

4 место. Приливные и волновые электростанции

Традиционные гидроэлектростанции работают по следующему принципу:

  1. Напор воды поступает на турбины.
  2. Турбины начинают вращаться.
  3. Вращение передаётся на генераторы, которые вырабатывают электроэнергию.

Строительство ГЭС обходится дороже ТЭС и возможно только в местах с большими запасами энергии воды. Но самая главная проблема – это нанесение вреда экосистемам из-за необходимости строительства плотин.

Приливные электростанции работают по схожему принципу, но используют для выработки энергии силу приливов и отливов.

«Водные» виды альтернативной энергетики включают такое интересное направление, как волновая энергетика. Её суть сводится к генерации электричества посредством использования энергии волн океана, которая гораздо выше приливной. Самой мощной волновой электростанцией на сегодня является Pelamis P-750, которая вырабатывает 2,25 МВт электрической энергии.

Раскачиваясь на волнах, эти огромные конвекторы («змеи») изгибаются, вследствие чего внутри приходят в движение гидравлические поршни. Они прокачивают масло через гидравлические двигатели, которые в свою очередь вращают электрогенераторы. Полученное электричество доставляется на берег через кабель, который проложен по дну. В перспективе количество конвекторов будет многократно увеличено и станция сможет вырабатывать до 21 МВт.

История использования энергии ветра

Когда началось использование энергии ветра для решения хозяйственных вопросов человека – точно сказать нельзя. Еще со времен древнего Египта известны ветряные мельницы. В древнем Китае ветряки использовались для откачки воды с рисовых полей. Использование паруса для мореходства известно еще раньше, со времен древнего Вавилона, и это только письменные свидетельства.

Европа в те времена представляла собой скопление диких племен. С появлением признаков цивилизации ветряные мельницы, парусные суда появились и здесь. Но на длительный период на этом использование ветра и заканчивалось. Слишком неустойчивый, непредсказуемый источник, рассчитывать на него без обладания запасным вариантом было невозможно.

С развитием производства появились первые насосы для подъема воды из скважин. Тогда же началось использование ветряков в качестве привода для них. Такие устройства функционируют и поныне, они просты, надежны и нетребовательны в эксплуатации.

Ветрогенераторы начали появляться с возникновением устройств для переработки вращательного движения в электроэнергию — генераторов. Бурное развитие ветрогенераторы получили в XX веке, хотя война остановила множество проектов в Европе.

На сегодня лидерами в использовании ветроэлектростанций являются США и Китай. Большое количество станций имеется в Европе, они сосредоточены на западном побережье. Больше всего в Дании, что вполне объяснимо — никаких других источников в этой стране не имеется.

Высокая эффективность ГЭС, отсутствие сильных и стабильных ветров на большинстве территории снизили интерес к ветроэнергетике. Кроме того, существующее на тот момент оборудование не имело высокой производительности, не давало возможностей производить достаточного количества энергии. Вопрос решался применением бензиновых или дизельных генераторов, более надежных и готовых в нужный момент выдать необходимый результат.

На сегодня интерес к ветроэнергетике значительно вырос. Появились новые, более эффективные разработки, способные обеспечивать достаточное количество потребителей. Кроме того, имеются сильные неодимовые магниты, позволяющие самостоятельно изготавливать генераторы с возможностью работать на медленной скорости вращения, что в корне изменило ситуацию и пробудило высокий интерес у конструкторов.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий

Adblock
detector